These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7577672)

  • 21. Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos.
    Hoppler S; Brown JD; Moon RT
    Genes Dev; 1996 Nov; 10(21):2805-17. PubMed ID: 8946920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus.
    Dosch R; Gawantka V; Delius H; Blumenstock C; Niehrs C
    Development; 1997 Jun; 124(12):2325-34. PubMed ID: 9199359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: a loss-of-function study using antisense RNA.
    Steinbeisser H; Fainsod A; Niehrs C; Sasai Y; De Robertis EM
    EMBO J; 1995 Nov; 14(21):5230-43. PubMed ID: 7489713
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction.
    Tannahill D; Isaacs HV; Close MJ; Peters G; Slack JM
    Development; 1992 Jul; 115(3):695-702. PubMed ID: 1425349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A screen for targets of the Xenopus T-box gene Xbra.
    Saka Y; Tada M; Smith JC
    Mech Dev; 2000 May; 93(1-2):27-39. PubMed ID: 10781937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterning of the mesoderm in Xenopus: dose-dependent and synergistic effects of Brachyury and Pintallavis.
    O'Reilly MA; Smith JC; Cunliffe V
    Development; 1995 May; 121(5):1351-9. PubMed ID: 7789266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos.
    Ault KT; Dirksen ML; Jamrich M
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6415-20. PubMed ID: 8692829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pre-MBT patterning of early gene regulation in Xenopus: the role of the cortical rotation and mesoderm induction.
    Ding X; Hausen P; Steinbeisser H
    Mech Dev; 1998 Jan; 70(1-2):15-24. PubMed ID: 9510021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1.
    Gawantka V; Delius H; Hirschfeld K; Blumenstock C; Niehrs C
    EMBO J; 1995 Dec; 14(24):6268-79. PubMed ID: 8557046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus.
    Christian JL; Moon RT
    Genes Dev; 1993 Jan; 7(1):13-28. PubMed ID: 8422982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FoxD1 protein interacts with Wnt and BMP signaling to differentially pattern mesoderm and neural tissue.
    Polevoy H; Malyarova A; Fonar Y; Elias S; Frank D
    Int J Dev Biol; 2017; 61(3-4-5):293-302. PubMed ID: 28621426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cdc42 Effector Protein 2 (XCEP2) is required for normal gastrulation and contributes to cellular adhesion in Xenopus laevis.
    Nelson KK; Nelson RW
    BMC Dev Biol; 2004 Oct; 4():13. PubMed ID: 15473906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specification of the body plan during Xenopus gastrulation: dorsoventral and anteroposterior patterning of the mesoderm.
    Slack JM; Isaacs HV; Johnson GE; Lettice LA; Tannahill D; Thompson J
    Dev Suppl; 1992; ():143-9. PubMed ID: 1299359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pitx2 homeobox protein is required early for endoderm formation and nodal signaling.
    Faucourt M; Houliston E; Besnardeau L; Kimelman D; Lepage T
    Dev Biol; 2001 Jan; 229(2):287-306. PubMed ID: 11203696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation.
    Jones CM; Kuehn MR; Hogan BL; Smith JC; Wright CV
    Development; 1995 Nov; 121(11):3651-62. PubMed ID: 8582278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of FGF signaling converts dorsal mesoderm to ventral mesoderm in early Xenopus embryos.
    Lee SY; Lim SK; Cha SW; Yoon J; Lee SH; Lee HS; Park JB; Lee JY; Kim SC; Kim J
    Differentiation; 2011 Sep; 82(2):99-107. PubMed ID: 21684060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression and functions of FGF-3 in Xenopus development.
    Lombardo A; Isaacs HV; Slack JM
    Int J Dev Biol; 1998 Nov; 42(8):1101-7. PubMed ID: 9879707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway.
    Takahashi C; Suzuki T; Nishida E; Kusakabe M
    Int J Dev Biol; 2012; 56(5):393-402. PubMed ID: 22811273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sebox regulates mesoderm formation in early amphibian embryos.
    Chen G; Tan R; Tao Q
    Dev Dyn; 2015 Nov; 244(11):1415-26. PubMed ID: 26285158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrin alpha subunit mRNAs are differentially expressed in early Xenopus embryos.
    Whittaker CA; DeSimone DW
    Development; 1993 Apr; 117(4):1239-49. PubMed ID: 8404528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.