BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 7577742)

  • 1. Assessment and significance of diploid-range epithelial populations in DNA aneuploid breast carcinomas using multi-parametric flow cytometry.
    Visscher DW; Sochacki P; Ottosen S; Wykes S; Crissman JD
    Anal Cell Pathol; 1995 Jun; 8(4):267-77. PubMed ID: 7577742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiparametric deoxyribonucleic acid and cell cycle analysis of breast carcinomas by flow cytometry. Clinicopathologic correlations.
    Visscher DW; Zarbo RJ; Jacobsen G; Kambouris A; Talpos G; Sakr W; Crissman JD
    Lab Invest; 1990 Mar; 62(3):370-8. PubMed ID: 1690316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of model chromosome number of cultured non-small cell lung carcinomas with DNA index of solid tumor tissue.
    Siegfried JM; Ellison DJ; Resau JH; Miura I; Testa JR
    Cancer Res; 1991 Jun; 51(12):3267-73. PubMed ID: 1645617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geographic distribution of co-dominant DNA stemlines in breast carcinoma.
    Visscher D; Dolan P; Ottosen S; Crissman J
    Cytometry; 1995 Sep; 21(1):14-7. PubMed ID: 8529464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of proliferation activity in breast carcinoma by flow cytometry analysis of S-phase and quantitative analysis of MIB-1.
    Masood S; Bui MM; Lu L
    Ann Clin Lab Sci; 1998; 28(6):315-23. PubMed ID: 9846198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative DNA analysis in breast carcinomas: a comparison between image analysis and flow cytometry.
    Lee AK; Dugan J; Hamilton WM; Cook L; Heatley G; Kamat B; Silverman ML
    Mod Pathol; 1991 Mar; 4(2):178-82. PubMed ID: 2047381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular coexpression of epidermal growth factor receptor, Her-2/neu, and p21ras in human breast cancers: evidence for the existence of distinctive patterns of genetic evolution that are common to tumors from different patients.
    Shackney SE; Pollice AA; Smith CA; Janocko LE; Sweeney L; Brown KA; Singh SG; Gu L; Yakulis R; Lucke JF
    Clin Cancer Res; 1998 Apr; 4(4):913-28. PubMed ID: 9563885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image cytophotometric DNA histogram heterogeneity in adenocarcinoma of the breast.
    Visscher DW; Shaheen C; Drozdowicz S; Crissman JD
    Anal Quant Cytol Histol; 1993 Jun; 15(3):206-12. PubMed ID: 8347261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow cytometric enumeration and kinetic analysis of inflammatory cell populations in breast carcinomas.
    Visscher DW; VanBree G; Ottosen S; Wykes S; Crissman JD
    Anal Cell Pathol; 1993 Nov; 5(6):321-30. PubMed ID: 8305328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carcinoma in situ of the female breast. A clinico-pathological, immunohistological, and DNA ploidy study.
    Ottesen GL
    APMIS Suppl; 2003; (108):1-67. PubMed ID: 12874968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow cytometric detection of multifocal DNA aneuploid cell populations in mastectomy specimens containing a primary breast carcinoma.
    van Dam PA; Van Bockstaele DR; Keersmaeckers GH; Uyttenbroeck FL
    Cytometry; 1990; 11(2):300-7. PubMed ID: 2318083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative DNA analysis and proliferation in breast carcinomas. A comparison between image analysis and flow cytometry.
    Lee AK; Wiley B; Dugan JM; Hamilton WH; Loda M; Heatley GJ; Cook L; Silverman ML
    Pathol Res Pract; 1992 Jun; 188(4-5):428-32. PubMed ID: 1329051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow cytometry vs. Ki67 labelling index in breast cancer: a prospective evaluation of 181 cases.
    Martínez-Arribas F; Núñez MJ; Piqueras V; Lucas AR; Sánchez J; Tejerina A; Schneider J
    Anticancer Res; 2002; 22(1A):295-8. PubMed ID: 12017306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA content in colorectal carcinoma: a flow cytometric study of the epithelial fraction.
    Bergström C; Emdin S; Roos G; Stenling R
    Anal Cell Pathol; 1995 Jun; 8(4):287-95. PubMed ID: 7577744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA in situ sensitivity to denaturation as a marker of human breast tumors.
    Kunicka JE; Olszewski W; Rosen PP; Kimmel M; Melamed MR; Darzynkiewicz Z
    Cancer Res; 1989 Nov; 49(22):6347-51. PubMed ID: 2804980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proliferative characteristics of primary and metastatic human solid tumors by DNA flow cytometry.
    Frankfurt OS; Greco WR; Slocum HK; Arbuck SG; Gamarra M; Pavelic ZP; Rustum YM
    Cytometry; 1984 Nov; 5(6):629-35. PubMed ID: 6518938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral blood mononuclear cells are a reliable internal standard for the flow cytometric DNA analysis of frozen malignant breast biopsies.
    Benn DE; Robinson BG
    Cytometry; 1996 Jun; 26(2):161-5. PubMed ID: 8817093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow cytometric DNA analysis of normal and cancerous human endometrium and cytological-histopathological correlations.
    Lindahl B; Alm P; Killander D; Långström E; Tropé C
    Anticancer Res; 1987; 7(4B):781-9. PubMed ID: 3674763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of cytokeratins in breast cancer cells using multiparameter DNA flow cytometry is related to both cellular factors and preparation procedure.
    Wingren S; Guerrieri C; Frånlund B; Stål O
    Anal Cell Pathol; 1995 Oct; 9(3):229-33. PubMed ID: 8562461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between nuclear DNA distribution and estrogen receptors in human mammary carcinomas.
    Auer GU; Caspersson TO; Gustafsson SA; Humla SA; Ljung BM; Nordenskjöld BA; Silfverswärd C; Wallgren AS
    Anal Quant Cytol; 1980 Dec; 2(4):280-4. PubMed ID: 7469203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.