These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 7577813)

  • 1. Conformational analysis of the disaccharide alpha-L-Rhap-(1-->2)-alpha-L-Rhap-OMe: comparison of dynamics simulations with NMR experiments.
    Hardy BJ; Egan W; Widmalm G
    Int J Biol Macromol; 1995 Jun; 17(3-4):149-60. PubMed ID: 7577813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conformational study of alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----OMe) by NMR nuclear Overhauser effect spectroscopy (NOESY) and molecular dynamics calculations.
    Widmalm G; Byrd RA; Egan W
    Carbohydr Res; 1992 May; 229(2):195-211. PubMed ID: 1394287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular conformations of a disaccharide investigated using NMR spectroscopy.
    Landersjö C; Stevensson B; Eklund R; Ostervall J; Söderman P; Widmalm G; Maliniak A
    J Biomol NMR; 2006 Jun; 35(2):89-101. PubMed ID: 16791735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conformational dynamics study of alpha-l-Rhap-(1-->2)[alpha-l-Rhap-(1-->3)]-alpha-l-Rhap-OMe in solution by NMR experiments and molecular simulations.
    Eklund R; Lycknert K; Söderman P; Widmalm G
    J Phys Chem B; 2005 Oct; 109(42):19936-45. PubMed ID: 16853578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified GOESY in the analysis of disaccharide conformation.
    Dixon AM; Widmalm G; Bull TE
    J Magn Reson; 2000 Dec; 147(2):266-72. PubMed ID: 11097818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational analysis and molecular dynamics simulation of alpha-(1-->2) and alpha-(1-->3) linked rhamnose oligosaccharides: reconciliation with optical rotation and NMR experiments.
    Hardy BJ; Bystricky S; Kovac P; Widmalm G
    Biopolymers; 1997 Jan; 41(1):83-96. PubMed ID: 8986121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexibility at a glycosidic linkage revealed by molecular dynamics, stochastic modeling, and (13)C NMR spin relaxation: conformational preferences of α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe in water and dimethyl sulfoxide solutions.
    Pendrill R; Engström O; Volpato A; Zerbetto M; Polimeno A; Widmalm G
    Phys Chem Chem Phys; 2016 Jan; 18(4):3086-96. PubMed ID: 26741055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformer selection and differential restriction of ligand mobility by a plant lectin--conformational behaviour of Galbeta1-3GlcNAcbeta1-R, Galbeta1-3GalNAcbeta1-R and Galbeta1-2Galbeta1-R' in the free state and complexed with galactoside-specific mistletoe lectin as revealed by random-walk and conformational-clustering molecular-mechanics.
    Gilleron M; Siebert HC; Kaltner H; von der Lieth CW; Kozár T; Halkes KM; Korchagina EY; Bovin NV; Gabius HJ; Vliegenthart JF
    Eur J Biochem; 1998 Mar; 252(3):416-27. PubMed ID: 9546657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational analysis of alpha-D-Fuc-(1-->4)-beta-D-GlcNAc-OMe. One-dimensional transient NOE experiments and Metropolis Monte Carlo simulations.
    Weimar T; Meyer B; Peters T
    J Biomol NMR; 1993 Jul; 3(4):399-414. PubMed ID: 8400830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational changes due to vicinal glycosylation: the branched alpha-L-Rhap(1-2)[beta-D-Galp(1-3)]-beta-D-Glc1-OMe trisaccharide compared with its parent disaccharides.
    Kozár T; Nifant'ev NE; Grosskurth H; Dabrowski U; Dabrowski J
    Biopolymers; 1998 Nov; 46(6):417-32. PubMed ID: 9798429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR and modelling studies of disaccharide conformation.
    Cheetham NW; Dasgupta P; Ball GE
    Carbohydr Res; 2003 Apr; 338(9):955-62. PubMed ID: 12681919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the conformational flexibility of α-L-rhamnose-containing oligosaccharides using 13C-site-specific labeling, NMR spectroscopy and molecular simulations: implications for the three-dimensional structure of bacterial rhamnan polysaccharides.
    Jonsson KH; Säwén E; Widmalm G
    Org Biomol Chem; 2012 Mar; 10(12):2453-63. PubMed ID: 22344369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MMC and LD simulations of alpha-D-Manp-(1-->2)-beta-D-Glcp-OMe: comparison to long-range heteronuclear NMR coupling constants and to the crystal structure.
    Höög C; Widmalm G
    Glycoconj J; 1998 Feb; 15(2):183-6. PubMed ID: 9557879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosidic linkage flexibility: The ψ torsion angle has a bimodal distribution in α-L-Rhap-(1→2)-α-L-Rhap-OMe as deduced from
    Zerbetto M; Polimeno A; Widmalm G
    J Chem Phys; 2020 Jan; 152(3):035103. PubMed ID: 31968956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation and NMR study of a blood group H trisaccharide.
    Widmalm G; Venable RM
    Biopolymers; 1994 Aug; 34(8):1079-88. PubMed ID: 8075388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural fluctuation of methyl N,N'-diacetyl-beta-D-chitobioside in vacuo and in aqueous solution: molecular dynamics simulations and proton NMR spectroscopy.
    Aida M; Sugawara Y; Oikawa S; Umemoto K
    Int J Biol Macromol; 1995 Jun; 17(3-4):227-35. PubMed ID: 7577822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational Preferences at the Glycosidic Linkage of Saccharides in Solution as Deduced from NMR Experiments and MD Simulations: Comparison to Crystal Structures.
    Dorst KM; Widmalm G
    Chemistry; 2024 Mar; 30(15):e202304047. PubMed ID: 38180821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inter-residual Hydrogen Bonding in Carbohydrates Unraveled by NMR Spectroscopy and Molecular Dynamics Simulations.
    Rönnols J; Engström O; Schnupf U; Säwén E; Brady JW; Widmalm G
    Chembiochem; 2019 Oct; 20(19):2519-2528. PubMed ID: 31066963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of two-dimensional NMR spectroscopy and molecular dynamics simulations to the conformational analysis of oligosaccharides corresponding to the cell-wall polysaccharide of Streptococcus group A.
    Kreis UC; Varma V; Pinto BM
    Int J Biol Macromol; 1995 Jun; 17(3-4):117-30. PubMed ID: 7577810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the extent of internal motions in oligosaccharides.
    Rutherford TJ; Partridge J; Weller CT; Homans SW
    Biochemistry; 1993 Nov; 32(47):12715-24. PubMed ID: 8251491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.