These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7577824)

  • 1. Hydrolytic degradation of benzylated poly(beta-malic acid): influence of sample size, sample shape, and polymer composition.
    Mauduit J; Boustta M; Vert M
    J Biomater Sci Polym Ed; 1995; 7(3):207-20. PubMed ID: 7577824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the degradation mechanisms of poly(malic acid) esters in vitro and their related cytotoxicities on J774 macrophages.
    Martinez Barbosa ME; Cammas S; Appel M; Ponchel G
    Biomacromolecules; 2004; 5(1):137-43. PubMed ID: 14715019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states.
    Kranz H; Ubrich N; Maincent P; Bodmeier R
    J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence.
    Grizzi I; Garreau H; Li S; Vert M
    Biomaterials; 1995 Mar; 16(4):305-11. PubMed ID: 7772670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, degradability, and drug releasing properties of methyl esters of fungal poly(beta,L-malic acid).
    Portilla-Arias JA; García-Alvarez M; de Ilarduya AM; Holler E; Galbis JA; Muñoz-Guerra S
    Macromol Biosci; 2008 Jun; 8(6):540-50. PubMed ID: 18322913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and cell affinity of functionalized poly(L-lactide-co-beta-malic acid) with high molecular weight.
    He B; Wan Y; Bei J; Wang S
    Biomaterials; 2004 Oct; 25(22):5239-47. PubMed ID: 15110475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(trimethylene carbonate)/Poly(malic acid) Amphiphilic Diblock Copolymers as Biocompatible Nanoparticles.
    Barouti G; Khalil A; Orione C; Jarnouen K; Cammas-Marion S; Loyer P; Guillaume SM
    Chemistry; 2016 Feb; 22(8):2819-30. PubMed ID: 26791328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices.
    Cammas S; Béar MM; Moine L; Escalup R; Ponchel G; Kataoka K; Guérin P
    Int J Biol Macromol; 1999; 25(1-3):273-82. PubMed ID: 10416675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Synthesis of a Novel Biodegradable Tunable Micellar Polymer Based on Partially Hydrogenated Poly(β-malic Acid-co-benzyl Malate).
    Yu Z; Ren H; Zhang Y; Qiao Y; Wang C; Yang T; Wu H
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro hydrolytic degradation of hydroxyl-functionalized poly(alpha-hydroxy acid)s.
    Leemhuis M; Kruijtzer JA; Nostrum CF; Hennink WE
    Biomacromolecules; 2007 Sep; 8(9):2943-9. PubMed ID: 17715961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly[(amino acid ester)phosphazenes] as substrates for the controlled release of small molecules.
    Allcock HR; Pucher SR; Scopelianos AG
    Biomaterials; 1994 Jun; 15(8):563-9. PubMed ID: 7948574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films.
    Lu L; Garcia CA; Mikos AG
    J Biomed Mater Res; 1999 Aug; 46(2):236-44. PubMed ID: 10380002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders.
    Gorna K; Gogolewski S
    J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolytic degradation of the coral/poly(DL-lactic acid) bioresorbable material.
    Li S; Vert M
    J Biomater Sci Polym Ed; 1996; 7(9):817-27. PubMed ID: 8773885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolytic degradation of films prepared from blends of high and low molecular weight poly(DL-lactic acid)s.
    Mauduit J; Pérouse E; Vert M
    J Biomed Mater Res; 1996 Feb; 30(2):201-7. PubMed ID: 9019485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of high molecular weight poly(L-lactide) in alkaline medium.
    Cam D; Hyon SH; Ikada Y
    Biomaterials; 1995 Jul; 16(11):833-43. PubMed ID: 8527598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of in vitro hydrolytic degradation on the morphology and crystallization behavior of poly(p-dioxanone).
    Sabino MA; Albuerne J; Müller AJ; Brisson J; Prud'homme RE
    Biomacromolecules; 2004; 5(2):358-70. PubMed ID: 15002995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization, and degradation behavior of amphiphilic poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(epsilon-caprolactone).
    Miao ZM; Cheng SX; Zhang XZ; Zhuo RX
    Biomacromolecules; 2005; 6(6):3449-57. PubMed ID: 16283778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of paclitaxel on hydrolytic degradation in matrices obtained from aliphatic polyesters and polyester carbonates.
    Musiał-Kulik M; Kasperczyk J; Jelonek K; Dobrzyński P; Gebarowska K; Janeczek H; Libera M
    Acta Pol Pharm; 2010; 67(6):664-8. PubMed ID: 21229883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solubilization of water-insoluble drugs due to random amphiphilic and degradable poly(dimethylmalic acid) derivatives.
    Schott MA; Domurado M; Leclercq L; Barbaud C; Domurado D
    Biomacromolecules; 2013 Jun; 14(6):1936-44. PubMed ID: 23672304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.