BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 7577830)

  • 1. Immobilization of heparin on polylactide for application to degradable biomaterials in contact with blood.
    Seifert B; Groth T; Herrmann K; Romaniuk P
    J Biomater Sci Polym Ed; 1995; 7(3):277-87. PubMed ID: 7577830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemocompatibility improvement of perfusion-decellularized clinical-scale liver scaffold through heparin immobilization.
    Bao J; Wu Q; Sun J; Zhou Y; Wang Y; Jiang X; Li L; Shi Y; Bu H
    Sci Rep; 2015 Jun; 5():10756. PubMed ID: 26030843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covalent immobilization of hirudin improves the haemocompatibility of polylactide-polyglycolide in vitro.
    Seifert B; Romaniuk P; Groth T
    Biomaterials; 1997 Nov; 18(22):1495-502. PubMed ID: 9426179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro blood compatibility of functional group-grafted and heparin-immobilized polyurethanes prepared by plasma glow discharge.
    Kang IK; Kwon OH; Kim MK; Lee YM; Sung YK
    Biomaterials; 1997 Aug; 18(16):1099-107. PubMed ID: 9247347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of heparin immobilization on the surface characteristics of a biological tissue fixed with a naturally occurring crosslinking agent (genipin): an in vitro study.
    Tsai CC; Chang Y; Sung HW; Hsu JC; Chen CN
    Biomaterials; 2001 Mar; 22(6):523-33. PubMed ID: 11219715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platelet deposition on stainless steel, spiral, and braided polylactide stents. A comparative study.
    Hietala EM; Maasilta P; Juuti H; Nuutinen JP; Harjula AL; Salminen US; Lassila R
    Thromb Haemost; 2004 Dec; 92(6):1394-401. PubMed ID: 15583749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coimmobilization of heparin/fibronectin mixture on titanium surfaces and their blood compatibility.
    Li G; Zhang F; Liao Y; Yang P; Huang N
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):255-62. PubMed ID: 20692134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(DL-lactic acid) film surface modification with heparin for improving hemocompatibility of blood-contacting bioresorbable devices.
    Sharkawi T; Darcos V; Vert M
    J Biomed Mater Res A; 2011 Jul; 98(1):80-7. PubMed ID: 21538828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane.
    Zhao J; Farhatnia Y; Kalaskar DM; Zhang Y; Bulter PE; Seifalian AM
    Int J Biochem Cell Biol; 2015 Nov; 68():176-86. PubMed ID: 26279141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platelet responses and coagulation activation on polylactide and heparin-polycaprolactone-L-lactide-coated polylactide stent struts.
    Hietala EM; Maasilta P; Välimaa T; Harjula AL; Törmälä P; Salminen US; Lassila R
    J Biomed Mater Res A; 2003 Dec; 67(3):785-91. PubMed ID: 14613226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan.
    Wang J; Hu W; Liu Q; Zhang S
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):241-7. PubMed ID: 21459560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement in hemocompatibility of chitosan/soy protein composite membranes by heparinization.
    Wang X; Shi N; Chen Y; Li C; Du X; Jin W; Chen Y; Chang PR
    Biomed Mater Eng; 2012; 22(1-3):143-50. PubMed ID: 22766713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation.
    Wissink MJ; Beernink R; Pieper JS; Poot AA; Engbers GH; Beugeling T; van Aken WG; Feijen J
    Biomaterials; 2001 Jan; 22(2):151-63. PubMed ID: 11101159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of NaIO4-treated heparin on PEG-modified 316L SS surface for high anti-thrombin-III binding.
    Chuang TW; Lin DT; Lin FH
    J Biomed Mater Res A; 2008 Sep; 86(3):648-61. PubMed ID: 18022801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The correlation between fibronectin adsorption and attachment of vascular cells on heparinized polycaprolactone membrane.
    Sun M; Deng J; Gao C
    J Colloid Interface Sci; 2015 Jun; 448():231-7. PubMed ID: 25744857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientruded polylactide based body-absorbable osteosynthesis devices: a short review.
    Tunc DC
    J Biomater Sci Polym Ed; 1995; 7(4):375-80. PubMed ID: 7495766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of haemocompatibility improvement of four polymeric biomaterials by two heparinization techniques.
    Michanetzis GP; Katsala N; Missirlis YF
    Biomaterials; 2003 Feb; 24(4):677-88. PubMed ID: 12437962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heparin surfaces: Impact of immobilization chemistry on hemocompatibility and protein adsorption.
    Gore S; Andersson J; Biran R; Underwood C; Riesenfeld J
    J Biomed Mater Res B Appl Biomater; 2014 Nov; 102(8):1817-24. PubMed ID: 24711209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and characterization of an antibacterial/anticoagulant dual-functional surface based on poly l-lactic acid electrospun fibrous mats.
    Yang W; Wu K; Liu X; Jiao Y; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():726-736. PubMed ID: 30184801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lotus-leaf-like structured heparin-conjugated poly(L-lactide-co-epsilon-caprolactone) as a blood compatible material.
    Lim JI; Kim Si; Kim SH
    Colloids Surf B Biointerfaces; 2013 Mar; 103():463-7. PubMed ID: 23261567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.