These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 7577939)

  • 1. Influence of the 9-methyl group of the retinal on the photocycle of bacteriorhodopsin studied by time-resolved rapid-scan and static low-temperature Fourier transform infrared difference spectroscopy.
    Weidlich O; Friedman N; Sheves M; Siebert F
    Biochemistry; 1995 Oct; 34(41):13502-10. PubMed ID: 7577939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes.
    Tittor J; Paula S; Subramaniam S; Heberle J; Henderson R; Oesterhelt D
    J Mol Biol; 2002 May; 319(2):555-65. PubMed ID: 12051928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved Fourier transform infrared spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: Asp-96 reprotonates during O formation; Asp-85 and Asp-212 deprotonate during O decay.
    Bousché O; Sonar S; Krebs MP; Khorana HG; Rothschild KJ
    Photochem Photobiol; 1992 Dec; 56(6):1085-95. PubMed ID: 1337213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein conformational changes during the bacteriorhodopsin photocycle. A Fourier transform infrared/resonance Raman study of the alkaline form of the mutant Asp-85-->Asn.
    Nilsson A; Rath P; Olejnik J; Coleman M; Rothschild KJ
    J Biol Chem; 1995 Dec; 270(50):29746-51. PubMed ID: 8530365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: detection of a stable O-like species and characterization of its photocycle at low temperature.
    He Y; Krebs MP; Fischer WB; Khorana HG; Rothschild KJ
    Biochemistry; 1993 Mar; 32(9):2282-90. PubMed ID: 8443171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steric interaction between the 9-methyl group of the retinal and tryptophan 182 controls 13-cis to all-trans reisomerization and proton uptake in the bacteriorhodopsin photocycle.
    Weidlich O; Schalt B; Friedman N; Sheves M; Lanyi JK; Brown LS; Siebert F
    Biochemistry; 1996 Aug; 35(33):10807-14. PubMed ID: 8718872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor.
    Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ
    Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved fourier transform infrared study of structural changes in the last steps of the photocycles of Glu-204 and Leu-93 mutants of bacteriorhodopsin.
    Kandori H; Yamazaki Y; Hatanaka M; Needleman R; Brown LS; Richter HT; Lanyi JK; Maeda A
    Biochemistry; 1997 Apr; 36(17):5134-41. PubMed ID: 9136874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing specific molecular processes and intermediates by time-resolved Fourier transform infrared spectroscopy: application to the bacteriorhodopsin photocycle.
    Lórenz-Fonfría VA; Kandori H; Padrós E
    J Phys Chem B; 2011 Jun; 115(24):7972-85. PubMed ID: 21615095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Static and time-resolved step-scan Fourier transform infrared investigations of the photoreaction of halorhodopsin from Natronobacterium pharaonis: consequences for models of the anion translocation mechanism.
    Hackmann C; Guijarro J; Chizhov I; Engelhard M; Rödig C; Siebert F
    Biophys J; 2001 Jul; 81(1):394-406. PubMed ID: 11423423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asp96 deprotonation and transmembrane alpha-helical structural changes in bacteriorhodopsin.
    Rothschild KJ; Marti T; Sonar S; He YW; Rath P; Fischer W; Khorana HG
    J Biol Chem; 1993 Dec; 268(36):27046-52. PubMed ID: 8262942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Participation of bacteriorhodopsin active-site lysine backbone in vibrations associated with retinal photochemistry.
    Gat Y; Grossjean M; Pinevsky I; Takei H; Rothman Z; Sigrist H; Lewis A; Sheves M
    Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2434-8. PubMed ID: 1549607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin.
    Kandori H; Shimono K; Sudo Y; Iwamoto M; Shichida Y; Kamo N
    Biochemistry; 2001 Aug; 40(31):9238-46. PubMed ID: 11478891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship of proton uptake on the cytoplasmic surface and reisomerization of the retinal in the bacteriorhodopsin photocycle: an attempt to understand the complex kinetics of the pH changes and the N and O intermediates.
    Cao Y; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1993 Sep; 32(38):10239-48. PubMed ID: 8399152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization.
    Herbst J; Heyne K; Diller R
    Science; 2002 Aug; 297(5582):822-5. PubMed ID: 12161649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacement of leucine-93 by alanine or threonine slows down the decay of the N and O intermediates in the photocycle of bacteriorhodopsin: implications for proton uptake and 13-cis-retinal----all-trans-retinal reisomerization.
    Subramaniam S; Greenhalgh DA; Rath P; Rothschild KJ; Khorana HG
    Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6873-7. PubMed ID: 1650486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active internal waters in the bacteriorhodopsin photocycle. A comparative study of the L and M intermediates at room and cryogenic temperatures by infrared spectroscopy.
    Lórenz-Fonfría VA; Furutani Y; Kandori H
    Biochemistry; 2008 Apr; 47(13):4071-81. PubMed ID: 18321068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences between the photocycles of halorhodopsin and the acid purple form of bacteriorhodopsin analyzed with millisecond time-resolved FTIR spectroscopy.
    Mitrovich QM; Victor KG; Braiman MS
    Biophys Chem; 1995; 56(1-2):121-7. PubMed ID: 7662860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water structural changes in the L and M photocycle intermediates of bacteriorhodopsin as revealed by time-resolved step-scan Fourier transform infrared (FTIR) spectroscopy.
    Morgan JE; Vakkasoglu AS; Gennis RB; Maeda A
    Biochemistry; 2007 Mar; 46(10):2787-96. PubMed ID: 17300175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.