These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 7577979)
1. Phosphorescence lifetime of tryptophan in proteins. Gonnelli M; Strambini GB Biochemistry; 1995 Oct; 34(42):13847-57. PubMed ID: 7577979 [TBL] [Abstract][Full Text] [Related]
2. Intramolecular quenching of tryptophan phosphorescence in short peptides and proteins. Gonnelli M; Strambini GB Photochem Photobiol; 2005; 81(3):614-22. PubMed ID: 15689181 [TBL] [Abstract][Full Text] [Related]
3. Conformational changes in proteins induced by dynamic associations. A tryptophan phosphorescence study. Gabellieri E; Strambini GB Eur J Biochem; 1994 Apr; 221(1):77-85. PubMed ID: 8168551 [TBL] [Abstract][Full Text] [Related]
4. Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Strambini GB; Gabellieri E; Gonnelli M; Rahuel-Clermont S; Branlant G Biophys J; 1998 Jun; 74(6):3165-72. PubMed ID: 9635769 [TBL] [Abstract][Full Text] [Related]
5. Room temperature phosphorescence study on the structural flexibility of single tryptophan containing proteins. Kowalska-Baron A; Gałęcki K; Wysocki S Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():380-7. PubMed ID: 25025310 [TBL] [Abstract][Full Text] [Related]
6. Physical studies of tyrosine and tryptophan residues in mammalian A1 heterogeneous nuclear ribonucleoprotein. Support for a segmented structure. Casas-Finet JR; Karpel RL; Maki AH; Kumar A; Wilson SH J Mol Biol; 1991 Sep; 221(2):693-709. PubMed ID: 1656054 [TBL] [Abstract][Full Text] [Related]
7. Characterization of lens alpha-crystallin tryptophan microenvironments by room temperature phosphorescence spectroscopy. Berger JW; Vanderkooi JM Biochemistry; 1989 Jun; 28(13):5501-8. PubMed ID: 2775720 [TBL] [Abstract][Full Text] [Related]
8. Tryptophan phosphorescence as a monitor of protein conformation in molecular films. Strambini EG; Strambini GB Biosens Bioelectron; 2000; 15(9-10):483-90. PubMed ID: 11419643 [TBL] [Abstract][Full Text] [Related]
9. Effects of NAD+ binding on the luminescence of tryptophans 84 and 310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Gabellieri E; Rahuel-Clermont S; Branlant G; Strambini GB Biochemistry; 1996 Sep; 35(38):12549-59. PubMed ID: 8823192 [TBL] [Abstract][Full Text] [Related]
10. Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase. Mersol JV; Steel DG; Gafni A Biophys Chem; 1993 Dec; 48(2):281-91. PubMed ID: 8298060 [TBL] [Abstract][Full Text] [Related]
11. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain. Bódis E; Strambini GB; Gonnelli M; Málnási-Csizmadia A; Somogyi B Biophys J; 2004 Aug; 87(2):1146-54. PubMed ID: 15298917 [TBL] [Abstract][Full Text] [Related]
12. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway. Strambini GB; Cioni P; Cook PF Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597 [TBL] [Abstract][Full Text] [Related]
13. Phosphorescence properties of Trp-84 and Trp-310 in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Gabellieri E; Strambini GB Biophys Chem; 1989 Jul; 33(3):257-64. PubMed ID: 2804244 [TBL] [Abstract][Full Text] [Related]
14. Phosphorescence properties and protein structure surrounding tryptophan residues in yeast, pig, and rabbit glyceraldehyde-3-phosphate dehydrogenase. Strambini GB; Gabellieri E Biochemistry; 1989 Jan; 28(1):160-6. PubMed ID: 2650738 [TBL] [Abstract][Full Text] [Related]
15. Acrylonitrile quenching of trp phosphorescence in proteins: a probe of the internal flexibility of the globular fold. Strambini GB; Gonnelli M Biophys J; 2010 Aug; 99(3):944-52. PubMed ID: 20682273 [TBL] [Abstract][Full Text] [Related]
16. Time-resolved protein phosphorescence in the stopped-flow: denaturation of horse liver alcohol dehydrogenase by urea and guanidine hydrochloride. Gonnelli M; Strambini GB Biochemistry; 1997 Dec; 36(51):16212-20. PubMed ID: 9405055 [TBL] [Abstract][Full Text] [Related]
17. Acrylamide quenching of Trp phosphorescence in liver alcohol dehydrogenase: evidence of gated quencher penetration. Strambini GB; Gonnelli M Biochemistry; 2009 Aug; 48(31):7482-91. PubMed ID: 19594170 [TBL] [Abstract][Full Text] [Related]
18. Nature of phototransformation of phytochrome As probed by intrinsic tryptophan residues. Sarkar HK; Song PS Biochemistry; 1982 Apr; 21(8):1967-72. PubMed ID: 7082656 [TBL] [Abstract][Full Text] [Related]
19. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans. Schlyer BD; Schauerte JA; Steel DG; Gafni A Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933 [TBL] [Abstract][Full Text] [Related]
20. Structure and stability of gamma-crystallins: tryptophan, tyrosine, and cysteine accessibility. Mandal K; Chakrabarti B Biochemistry; 1988 Jun; 27(12):4564-71. PubMed ID: 3166999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]