These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 7577984)
41. How Does Replacement of the Axial Histidine Ligand in Cytochrome Lee CWZ; Mubarak MQE; Green AP; de Visser SP Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32992593 [TBL] [Abstract][Full Text] [Related]
42. Heme pocket interactions in cytochrome c peroxidase studied by site-directed mutagenesis and resonance Raman spectroscopy. Smulevich G; Mauro JM; Fishel LA; English AM; Kraut J; Spiro TG Biochemistry; 1988 Jul; 27(15):5477-85. PubMed ID: 2846039 [TBL] [Abstract][Full Text] [Related]
43. Resonance Raman, Electron Paramagnetic Resonance, and Magnetic Circular Dichroism Spectroscopic Investigation of Diheme Cytochrome c Peroxidases from Nitrosomonas europaea and Shewanella oneidensis. Wolf MW; Rizzolo K; Elliott SJ; Lehnert N Biochemistry; 2018 Nov; 57(45):6416-6433. PubMed ID: 30335984 [TBL] [Abstract][Full Text] [Related]
44. CO recombination in cytochrome c peroxidase: effect of the local heme environment on CO binding explored through site-directed mutagenesis. Miller MA; Coletta M; Mauro JM; Putnam LD; Farnum MF; Kraut J; Traylor TG Biochemistry; 1990 Feb; 29(7):1777-91. PubMed ID: 2158813 [TBL] [Abstract][Full Text] [Related]
45. Characterization of the spleen green hemeprotein with magnetic and natural circular dichroism spectroscopy: positive evidence for a myeloperoxidase-type active site. Sono M; Dawson JH; Ikeda-Saito M Biochim Biophys Acta; 1986 Sep; 873(1):62-72. PubMed ID: 3017435 [TBL] [Abstract][Full Text] [Related]
46. Replacement of the axial histidine ligand with imidazole in cytochrome c peroxidase. 1. Effects on structure. Hirst J; Wilcox SK; Williams PA; Blankenship J; McRee DE; Goodin DB Biochemistry; 2001 Feb; 40(5):1265-73. PubMed ID: 11170452 [TBL] [Abstract][Full Text] [Related]
47. Effects of cyanogen bromide modification of the distal histidine on the spectroscopic and ligand binding properties of myoglobin: magnetic circular dichroism spectroscopy as a probe of distal water ligation in ferric high-spin histidine-bound heme proteins. Bracete AM; Sono M; Dawson JH Biochim Biophys Acta; 1991 Nov; 1080(3):264-70. PubMed ID: 1954234 [TBL] [Abstract][Full Text] [Related]
48. A study of the K(+)-site mutant of ascorbate peroxidase: mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side. Cheek J; Mandelman D; Poulos TL; Dawson JH J Biol Inorg Chem; 1999 Feb; 4(1):64-72. PubMed ID: 10499104 [TBL] [Abstract][Full Text] [Related]
49. Crystal structure of guaiacol and phenol bound to a heme peroxidase. Murphy EJ; Metcalfe CL; Nnamchi C; Moody PC; Raven EL FEBS J; 2012 May; 279(9):1632-9. PubMed ID: 22093282 [TBL] [Abstract][Full Text] [Related]
50. Assignment of the heme axial ligand(s) for the ferric myoglobin (H93G) and heme oxygenase (H25A) cavity mutants as oxygen donors using magnetic circular dichroism. Pond AE; Roach MP; Sono M; Rux AH; Franzen S; Hu R; Thomas MR; Wilks A; Dou Y; Ikeda-Saito M; Ortiz de Montellano PR; Woodruff WH; Boxer SG; Dawson JH Biochemistry; 1999 Jun; 38(23):7601-8. PubMed ID: 10360958 [TBL] [Abstract][Full Text] [Related]
51. Effect of single-site charge-reversal mutations on the catalytic properties of yeast cytochrome c peroxidase: evidence for a single, catalytically active, cytochrome c binding domain. Pearl NM; Jacobson T; Meyen C; Clementz AG; Ok EY; Choi E; Wilson K; Vitello LB; Erman JE Biochemistry; 2008 Mar; 47(9):2766-75. PubMed ID: 18232645 [TBL] [Abstract][Full Text] [Related]
52. Proton nuclear Overhauser effect study of the heme active site structure of Coprinus macrorhizus peroxidase. Dugad LB; Goff HM Biochim Biophys Acta; 1992 Jul; 1122(1):63-9. PubMed ID: 1321674 [TBL] [Abstract][Full Text] [Related]
53. Effect of Asp-235-->Asn substitution on the absorption spectrum and hydrogen peroxide reactivity of cytochrome c peroxidase. Vitello LB; Erman JE; Miller MA; Mauro JM; Kraut J Biochemistry; 1992 Nov; 31(46):11524-35. PubMed ID: 1332763 [TBL] [Abstract][Full Text] [Related]
54. Resonance Raman spectroscopy of cytochrome c peroxidase variants that mimic manganese peroxidase. Feng M; Tachikawa H; Wang X; Pfister TD; Gengenbach AJ; Lu Y J Biol Inorg Chem; 2003 Sep; 8(7):699-706. PubMed ID: 14505074 [TBL] [Abstract][Full Text] [Related]
55. Oxidation of the His-52 --> Leu mutant of cytochrome c peroxidase by p-nitroperoxybenzoic acid: role of the distal histidine in hydroperoxide activation. Palamakumbura AH; Vitello LB; Erman JE Biochemistry; 1999 Nov; 38(47):15653-8. PubMed ID: 10569951 [TBL] [Abstract][Full Text] [Related]
56. Resonance Raman study on cytochrome c peroxidase and its intermediate. Presence of the Fe(IV) = O bond in compound ES and heme-linked ionization. Hashimoto S; Teraoka J; Inubushi T; Yonetani T; Kitagawa T J Biol Chem; 1986 Aug; 261(24):11110-8. PubMed ID: 3015957 [TBL] [Abstract][Full Text] [Related]
57. Spectroscopic characterization of recombinant pea cytosolic ascorbate peroxidase: similarities and differences with cytochrome c peroxidase. Nissum M; Neri F; Mandelman D; Poulos TL; Smulevich G Biochemistry; 1998 Jun; 37(22):8080-7. PubMed ID: 9609702 [TBL] [Abstract][Full Text] [Related]
58. Time-resolved absorption and magnetic circular dichroism spectroscopy of cytochrome c3 from Desulfovibrio. O'Connor DB; Goldbeck RA; Hazzard JH; Kliger DS; Cusanovich MA Biophys J; 1993 Oct; 65(4):1718-26. PubMed ID: 8274660 [TBL] [Abstract][Full Text] [Related]
59. MCD, EPR and NMR spectroscopic studies of rabbit hemopexin and its heme binding domain. Cox MC; Le Brun N; Thomson AJ; Smith A; Morgan WT; Moore GR Biochim Biophys Acta; 1995 Dec; 1253(2):215-23. PubMed ID: 8519805 [TBL] [Abstract][Full Text] [Related]