These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 7578039)
1. Human aldose reductase: rate constants for a mechanism including interconversion of ternary complexes by recombinant wild-type enzyme. Grimshaw CE; Bohren KM; Lai CJ; Gabbay KH Biochemistry; 1995 Nov; 34(44):14356-65. PubMed ID: 7578039 [TBL] [Abstract][Full Text] [Related]
2. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis. Nidetzky B; Klimacek M; Mayr P Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616 [TBL] [Abstract][Full Text] [Related]
3. Human aldose reductase: subtle effects revealed by rapid kinetic studies of the C298A mutant enzyme. Grimshaw CE; Bohren KM; Lai CJ; Gabbay KH Biochemistry; 1995 Nov; 34(44):14366-73. PubMed ID: 7578040 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of human aldehyde reductase: characterization of the active site pocket. Barski OA; Gabbay KH; Grimshaw CE; Bohren KM Biochemistry; 1995 Sep; 34(35):11264-75. PubMed ID: 7669785 [TBL] [Abstract][Full Text] [Related]
5. Human aldose reductase: pK of tyrosine 48 reveals the preferred ionization state for catalysis and inhibition. Grimshaw CE; Bohren KM; Lai CJ; Gabbay KH Biochemistry; 1995 Nov; 34(44):14374-84. PubMed ID: 7578041 [TBL] [Abstract][Full Text] [Related]
6. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency. Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908 [TBL] [Abstract][Full Text] [Related]
7. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875 [TBL] [Abstract][Full Text] [Related]
8. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252 [TBL] [Abstract][Full Text] [Related]
9. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural. Jordan DB; Braker JD; Bowman MJ; Vermillion KE; Moon J; Liu ZL Biochim Biophys Acta; 2011 Dec; 1814(12):1686-94. PubMed ID: 21890004 [TBL] [Abstract][Full Text] [Related]
10. The crystal structure of the aldose reductase.NADPH binary complex. Borhani DW; Harter TM; Petrash JM J Biol Chem; 1992 Dec; 267(34):24841-7. PubMed ID: 1447221 [TBL] [Abstract][Full Text] [Related]
11. Studies on pig muscle aldose reductase. Kinetic mechanism and evidence for a slow conformational change upon coenzyme binding. Kubiseski TJ; Hyndman DJ; Morjana NA; Flynn TG J Biol Chem; 1992 Apr; 267(10):6510-7. PubMed ID: 1551865 [TBL] [Abstract][Full Text] [Related]
12. Rate constants for a mechanism including intermediates in the interconversion of ternary complexes by horse liver alcohol dehydrogenase. Sekhar VC; Plapp BV Biochemistry; 1990 May; 29(18):4289-95. PubMed ID: 2161681 [TBL] [Abstract][Full Text] [Related]
13. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies. Nidetzky B; Brüggler K; Kratzer R; Mayr P J Agric Food Chem; 2003 Dec; 51(27):7930-5. PubMed ID: 14690376 [TBL] [Abstract][Full Text] [Related]
14. Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Bohren KM; Grimshaw CE; Lai CJ; Harrison DH; Ringe D; Petsko GA; Gabbay KH Biochemistry; 1994 Mar; 33(8):2021-32. PubMed ID: 8117659 [TBL] [Abstract][Full Text] [Related]
15. The structure of Apo R268A human aldose reductase: hinges and latches that control the kinetic mechanism. Bohren KM; Brownlee JM; Milne AC; Gabbay KH; Harrison DH Biochim Biophys Acta; 2005 May; 1748(2):201-12. PubMed ID: 15769597 [TBL] [Abstract][Full Text] [Related]
16. NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Isolation, characterization and biochemical properties of the enzyme. Neuhauser W; Haltrich D; Kulbe KD; Nidetzky B Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):683-92. PubMed ID: 9307017 [TBL] [Abstract][Full Text] [Related]
17. The kinetic mechanism of human placental aldose reductase and aldehyde reductase II. Bhatnagar A; Das B; Gavva SR; Cook PF; Srivastava SK Arch Biochem Biophys; 1988 Mar; 261(2):264-74. PubMed ID: 3128169 [TBL] [Abstract][Full Text] [Related]
18. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies. Kratzer R; Nidetzky B Biochem J; 2005 Jul; 389(Pt 2):507-15. PubMed ID: 15799715 [TBL] [Abstract][Full Text] [Related]
19. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related]
20. Interaction of NADP(H) with oxidized and reduced P450 reductase during catalysis. Studies with nucleotide analogues. Murataliev MB; Feyereisen R Biochemistry; 2000 May; 39(17):5066-74. PubMed ID: 10819972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]