These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7578040)

  • 1. Human aldose reductase: subtle effects revealed by rapid kinetic studies of the C298A mutant enzyme.
    Grimshaw CE; Bohren KM; Lai CJ; Gabbay KH
    Biochemistry; 1995 Nov; 34(44):14366-73. PubMed ID: 7578040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human aldose reductase: rate constants for a mechanism including interconversion of ternary complexes by recombinant wild-type enzyme.
    Grimshaw CE; Bohren KM; Lai CJ; Gabbay KH
    Biochemistry; 1995 Nov; 34(44):14356-65. PubMed ID: 7578039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of human aldehyde reductase: characterization of the active site pocket.
    Barski OA; Gabbay KH; Grimshaw CE; Bohren KM
    Biochemistry; 1995 Sep; 34(35):11264-75. PubMed ID: 7669785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human aldose reductase: pK of tyrosine 48 reveals the preferred ionization state for catalysis and inhibition.
    Grimshaw CE; Bohren KM; Lai CJ; Gabbay KH
    Biochemistry; 1995 Nov; 34(44):14374-84. PubMed ID: 7578041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of aldose reductase inhibition: binding of NADP+/NADPH and alrestatin-like inhibitors.
    Ehrig T; Bohren KM; Prendergast FG; Gabbay KH
    Biochemistry; 1994 Jun; 33(23):7157-65. PubMed ID: 8003482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography.
    Petschacher B; Leitgeb S; Kavanagh KL; Wilson DK; Nidetzky B
    Biochem J; 2005 Jan; 385(Pt 1):75-83. PubMed ID: 15320875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of the aldose reductase.NADPH binary complex.
    Borhani DW; Harter TM; Petrash JM
    J Biol Chem; 1992 Dec; 267(34):24841-7. PubMed ID: 1447221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme.
    Bohren KM; Grimshaw CE; Lai CJ; Harrison DH; Ringe D; Petsko GA; Gabbay KH
    Biochemistry; 1994 Mar; 33(8):2021-32. PubMed ID: 8117659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies.
    Kratzer R; Nidetzky B
    Biochem J; 2005 Jul; 389(Pt 2):507-15. PubMed ID: 15799715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on pig muscle aldose reductase. Kinetic mechanism and evidence for a slow conformational change upon coenzyme binding.
    Kubiseski TJ; Hyndman DJ; Morjana NA; Flynn TG
    J Biol Chem; 1992 Apr; 267(10):6510-7. PubMed ID: 1551865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xylose reductase from the Basidiomycete fungus Cryptococcus flavus: purification, steady-state kinetic characterization, and detailed analysis of the substrate binding pocket using structure-activity relationships.
    Mayr P; Petschacher B; Nidetzky B
    J Biochem; 2003 Apr; 133(4):553-62. PubMed ID: 12761304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAD(P)H-dependent aldose reductase from the xylose-assimilating yeast Candida tenuis. Isolation, characterization and biochemical properties of the enzyme.
    Neuhauser W; Haltrich D; Kulbe KD; Nidetzky B
    Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):683-92. PubMed ID: 9307017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetic mechanism of human placental aldose reductase and aldehyde reductase II.
    Bhatnagar A; Das B; Gavva SR; Cook PF; Srivastava SK
    Arch Biochem Biophys; 1988 Mar; 261(2):264-74. PubMed ID: 3128169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies.
    Nidetzky B; Brüggler K; Kratzer R; Mayr P
    J Agric Food Chem; 2003 Dec; 51(27):7930-5. PubMed ID: 14690376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human placental aldose reductase: role of Cys-298 in substrate and inhibitor binding.
    Bhatnagar A; Liu SQ; Ueno N; Chakrabarti B; Srivastava SK
    Biochim Biophys Acta; 1994 Apr; 1205(2):207-14. PubMed ID: 8155699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110.
    Tarle I; Borhani DW; Wilson DK; Quiocho FA; Petrash JM
    J Biol Chem; 1993 Dec; 268(34):25687-93. PubMed ID: 8245005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural.
    Jordan DB; Braker JD; Bowman MJ; Vermillion KE; Moon J; Liu ZL
    Biochim Biophys Acta; 2011 Dec; 1814(12):1686-94. PubMed ID: 21890004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.