These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7578070)

  • 1. Structure of the third cytoplasmic loop of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Biochemistry; 1995 Nov; 34(45):14621-5. PubMed ID: 7578070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Mol Vis; 1996 Dec; 2():12. PubMed ID: 9238089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin.
    Brabazon DM; Abdulaev NG; Marino JP; Ridge KD
    Biochemistry; 2003 Jan; 42(2):302-11. PubMed ID: 12525157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-activated rhodopsin induces structural binding motif in G protein alpha subunit.
    Kisselev OG; Kao J; Ponder JW; Fann YC; Gautam N; Marshall GR
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4270-5. PubMed ID: 9539726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first and second cytoplasmic loops of the G-protein receptor, rhodopsin, independently form beta-turns.
    Yeagle PL; Alderfer JL; Salloum AC; Ali L; Albert AD
    Biochemistry; 1997 Apr; 36(13):3864-9. PubMed ID: 9092816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the carboxy-terminal domain of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Nat Struct Biol; 1995 Oct; 2(10):832-4. PubMed ID: 7552702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A C-terminal peptide of bovine rhodopsin binds to the transducin alpha-subunit and facilitates its activation.
    Phillips WJ; Cerione RA
    Biochem J; 1994 Apr; 299 ( Pt 2)(Pt 2):351-7. PubMed ID: 8172594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing rhodopsin-transducin interactions by surface modification and mass spectrometry.
    Wang X; Kim SH; Ablonczy Z; Crouch RK; Knapp DR
    Biochemistry; 2004 Sep; 43(35):11153-62. PubMed ID: 15366925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.
    Gao Y; Westfield G; Erickson JW; Cerione RA; Skiniotis G; Ramachandran S
    J Biol Chem; 2017 Aug; 292(34):14280-14289. PubMed ID: 28655769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionally discrete mimics of light-activated rhodopsin identified through expression of soluble cytoplasmic domains.
    Abdulaev NG; Ngo T; Chen R; Lu Z; Ridge KD
    J Biol Chem; 2000 Dec; 275(50):39354-63. PubMed ID: 10988291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light scattering methods to monitor interactions between rhodopsin-containing membranes and soluble proteins.
    Heck M; Pulvermüller A; Hofmann KP
    Methods Enzymol; 2000; 315():329-47. PubMed ID: 10736711
    [No Abstract]   [Full Text] [Related]  

  • 12. Three dimensional structure of the seventh transmembrane helical domain of the G-protein receptor, rhodopsin.
    Yeagle PL; Danis C; Choi G; Alderfer JL; Albert AD
    Mol Vis; 2000 Jul; 6():125-31. PubMed ID: 10930473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural studies of metarhodopsin II, the activated form of the G-protein coupled receptor, rhodopsin.
    Choi G; Landin J; Galan JF; Birge RR; Albert AD; Yeagle PL
    Biochemistry; 2002 Jun; 41(23):7318-24. PubMed ID: 12044163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and orientation of a G protein fragment in the receptor bound state from residual dipolar couplings.
    Koenig BW; Kontaxis G; Mitchell DC; Louis JM; Litman BJ; Bax A
    J Mol Biol; 2002 Sep; 322(2):441-61. PubMed ID: 12217702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR structure of a receptor-bound G-protein peptide.
    Dratz EA; Furstenau JE; Lambert CG; Thireault DL; Rarick H; Schepers T; Pakhlevaniants S; Hamm HE
    Nature; 1993 May; 363(6426):276-81. PubMed ID: 8487866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of third cytoplasmic loop of bovine rhodopsin by multicanonical molecular dynamics.
    Watanabe YS; Fukunishi Y; Nakamura H
    J Mol Graph Model; 2004 Sep; 23(1):59-68. PubMed ID: 15331054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops.
    Kim JM; Hwa J; Garriga P; Reeves PJ; RajBhandary UL; Khorana HG
    Biochemistry; 2005 Feb; 44(7):2284-92. PubMed ID: 15709741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure.
    Cai K; Klein-Seetharaman J; Farrens D; Zhang C; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7925-30. PubMed ID: 10387034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constraints on the conformation of the cytoplasmic face of dark-adapted and light-excited rhodopsin inferred from antirhodopsin antibody imprints.
    Bailey BW; Mumey B; Hargrave PA; Arendt A; Ernst OP; Hofmann KP; Callis PR; Burritt JB; Jesaitis AJ; Dratz EA
    Protein Sci; 2003 Nov; 12(11):2453-75. PubMed ID: 14573859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal destabilization of rhodopsin and opsin by proteolytic cleavage in bovine rod outer segment disk membranes.
    Landin JS; Katragadda M; Albert AD
    Biochemistry; 2001 Sep; 40(37):11176-83. PubMed ID: 11551216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.