These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 7578081)

  • 1. The role of Thr268 in oxygen activation of cytochrome P450BM-3.
    Yeom H; Sligar SG; Li H; Poulos TL; Fulco AJ
    Biochemistry; 1995 Nov; 34(45):14733-40. PubMed ID: 7578081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P450BM-3: reduction by NADPH and sodium dithionite.
    Peterson JA; Boddupalli SS
    Arch Biochem Biophys; 1992 May; 294(2):654-61. PubMed ID: 1567220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen activation by cytochrome P450BM-3: effects of mutating an active site acidic residue.
    Yeom H; Sligar SG
    Arch Biochem Biophys; 1997 Jan; 337(2):209-16. PubMed ID: 9016815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the linker region connecting the reductase and heme domains in cytochrome P450BM-3.
    Govindaraj S; Poulos TL
    Biochemistry; 1995 Sep; 34(35):11221-6. PubMed ID: 7669780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the substrate specificity of Bacillus megaterium cytochrome P-450 BM3: hydroxylation of alkyl trimethylammonium compounds.
    Oliver CF; Modi S; Primrose WU; Lian LY; Roberts GC
    Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):537-44. PubMed ID: 9359427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavin supported fatty acid oxidation by the heme domain of Bacillus megaterium cytochrome P450BM-3.
    Gonvindaraj S; Li H; Poulos TL
    Biochem Biophys Res Commun; 1994 Sep; 203(3):1745-9. PubMed ID: 7945324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thr268 in substrate binding and catalysis in P450BM-3.
    Truan G; Peterson JA
    Arch Biochem Biophys; 1998 Jan; 349(1):53-64. PubMed ID: 9439582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatty acid monooxygenation by P450BM-3: product identification and proposed mechanisms for the sequential hydroxylation reactions.
    Boddupalli SS; Pramanik BC; Slaughter CA; Estabrook RW; Peterson JA
    Arch Biochem Biophys; 1992 Jan; 292(1):20-8. PubMed ID: 1727637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium.
    Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW
    Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single mutation in cytochrome P450 BM3 changes substrate orientation in a catalytic intermediate and the regiospecificity of hydroxylation.
    Oliver CF; Modi S; Sutcliffe MJ; Primrose WU; Lian LY; Roberts GC
    Biochemistry; 1997 Feb; 36(7):1567-72. PubMed ID: 9048540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3.
    Kitazume T; Haines DC; Estabrook RW; Chen B; Peterson JA
    Biochemistry; 2007 Oct; 46(42):11892-901. PubMed ID: 17902705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P450BM-3; a tale of two domains--or is it three?
    Peterson JA; Sevrioukova I; Truan G; Graham-Lorence SE
    Steroids; 1997 Jan; 62(1):117-23. PubMed ID: 9029725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the domain structure of cytochrome P450 102 (BM-3): isolation and properties of a 45-kDa FAD/NADP domain.
    Black SD
    Biochem Biophys Res Commun; 1994 Aug; 203(1):162-8. PubMed ID: 8074651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of the fatty acid hydroxylase activity of cytochrome P450BM-3 utilizing its functional domains.
    Sevrioukova I; Truan G; Peterson JA
    Arch Biochem Biophys; 1997 Apr; 340(2):231-8. PubMed ID: 9143326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pivotal role of water in the mechanism of P450BM-3.
    Haines DC; Tomchick DR; Machius M; Peterson JA
    Biochemistry; 2001 Nov; 40(45):13456-65. PubMed ID: 11695892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Barbie box sequences as cis-acting elements involved in the barbiturate-mediated induction of cytochromes P450BM-1 and P450BM-3 in Bacillus megaterium.
    Liang Q; He JS; Fulco AJ
    J Biol Chem; 1995 Mar; 270(9):4438-50. PubMed ID: 7876210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein engineering of the cytochrome P450 monooxygenase from Bacillus megaterium.
    Urlacher VB; Schmid RD
    Methods Enzymol; 2004; 388():208-24. PubMed ID: 15289074
    [No Abstract]   [Full Text] [Related]  

  • 20. Crystal structure of inhibitor-bound P450BM-3 reveals open conformation of substrate access channel.
    Haines DC; Chen B; Tomchick DR; Bondlela M; Hegde A; Machius M; Peterson JA
    Biochemistry; 2008 Mar; 47(12):3662-70. PubMed ID: 18298086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.