These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 7578085)

  • 61. Selection of a RNA aptamer that binds to human activated protein C and inhibits its protease function.
    Gal SW; Amontov S; Urvil PT; Vishnuvardhan D; Nishikawa F; Kumar PK; Nishikawa S
    Eur J Biochem; 1998 Mar; 252(3):553-62. PubMed ID: 9546673
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Single molecule detection of RNA reporter probes by amplification with Q beta replicase.
    Burg JL; Juffras AM; Wu Y; Blomquist CL; Du Y
    Mol Cell Probes; 1996 Aug; 10(4):257-71. PubMed ID: 8865174
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Identification of two forms of Q{beta} replicase with different thermal stabilities but identical RNA replication activity.
    Ichihashi N; Matsuura T; Hosoda K; Yomo T
    J Biol Chem; 2010 Nov; 285(48):37210-7. PubMed ID: 20858892
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Replication of partial double-stranded RNAs by Qβ replicase.
    Tomita K; Ichihashi N; Yomo T
    Biochem Biophys Res Commun; 2015 Nov; 467(2):293-6. PubMed ID: 26441086
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Effect of synthetic polynucleotides and RNA on poly(C)-dependent poly(G) polymerase activity of Q beta replicase].
    Berzin VM; Gren EJ
    Biokhimiia; 1975; 40(3):526-30. PubMed ID: 54194
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The mutant distribution of an RNA species replicated by Q beta replicase.
    Rohde N; Daum H; Biebricher CK
    J Mol Biol; 1995 Jun; 249(4):754-62. PubMed ID: 7602587
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Thirty Years of Studies of Qβ Replicase: What Have We Learned and What Is Yet to Be Learned?
    Chetverin AB
    Biochemistry (Mosc); 2018 Jan; 83(Suppl 1):S19-S32. PubMed ID: 29544428
    [TBL] [Abstract][Full Text] [Related]  

  • 68. From oligonucleotide shapes to genomic SELEX: novel biological regulatory loops.
    Gold L; Brown D; He Y; Shtatland T; Singer BS; Wu Y
    Proc Natl Acad Sci U S A; 1997 Jan; 94(1):59-64. PubMed ID: 8990161
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular recognition of amino acids by RNA aptamers: the evolution into an L-tyrosine binder of a dopamine-binding RNA motif.
    Mannironi C; Scerch C; Fruscoloni P; Tocchini-Valentini GP
    RNA; 2000 Apr; 6(4):520-7. PubMed ID: 10786843
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Synergism in replication and translation of messenger RNA in a cell-free system.
    Morozov IY; Ugarov VI; Chetverin AB; Spirin AS
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9325-9. PubMed ID: 8415701
    [TBL] [Abstract][Full Text] [Related]  

  • 71. RNA replication: required intermediates and the dissociation of template, product, and Q beta replicase.
    Dobkin C; Mills DR; Kramer FR; Spiegelman S
    Biochemistry; 1979 May; 18(10):2038-44. PubMed ID: 107965
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structural transition of replicable RNAs during in vitro evolution with Qβ replicase.
    Mizuuchi R; Usui K; Ichihashi N
    RNA; 2020 Jan; 26(1):83-90. PubMed ID: 31690585
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Autonomous role of 3'-terminal CCCA in directing transcription of RNAs by Qbeta replicase.
    Tretheway DM; Yoshinari S; Dreher TW
    J Virol; 2001 Dec; 75(23):11373-83. PubMed ID: 11689618
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparison of pausing during transcription and replication.
    LaFlamme SE; Kramer FR; Mills DR
    Nucleic Acids Res; 1985 Dec; 13(23):8425-40. PubMed ID: 3841202
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Compartmentalization in a water-in-oil emulsion repressed the spontaneous amplification of RNA by Q beta replicase.
    Urabe H; Ichihashi N; Matsuura T; Hosoda K; Kazuta Y; Kita H; Yomo T
    Biochemistry; 2010 Mar; 49(9):1809-13. PubMed ID: 20108973
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Site-directed cleavage of RNA.
    Shibahara S; Mukai S; Nishihara T; Inoue H; Ohtsuka E; Morisawa H
    Nucleic Acids Res; 1987 Jun; 15(11):4403-15. PubMed ID: 2438655
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Three small ribooligonucleotides with specific arginine sites.
    Connell GJ; Illangesekare M; Yarus M
    Biochemistry; 1993 Jun; 32(21):5497-502. PubMed ID: 8504070
    [TBL] [Abstract][Full Text] [Related]  

  • 78. High-affinity RNA ligands to basic fibroblast growth factor inhibit receptor binding.
    Jellinek D; Lynott CK; Rifkin DB; Janjić N
    Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11227-31. PubMed ID: 7504300
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Amino acid and nucleotide sequence homologies among E. coli RNA polymerase core enzyme subunits, DNA primase, elongation factor Tu, F1-ATPase alpha, ribosomal protein L3, DNA polymerase I, T7 phage DNA polymerase, and MS2 phage RNA replicase beta subunit.
    Ohnishi K
    Nucleic Acids Symp Ser; 1985; (16):253-6. PubMed ID: 2868446
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Replicable and recombinogenic RNAs.
    Chetverin AB
    FEBS Lett; 2004 Jun; 567(1):35-41. PubMed ID: 15165890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.