These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 7578100)

  • 21. Promotion of duplex and triplex DNA formation by polycation comb-type copolymers.
    Torigoe H; Maruyama A
    Methods Mol Med; 2001; 65():209-24. PubMed ID: 21318757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic analysis of triple-helix formation by pyrimidine oligodeoxynucleotides and duplex DNA.
    Xodo LE
    Eur J Biochem; 1995 Mar; 228(3):918-26. PubMed ID: 7737194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient DNA strand displacement by a W-shaped nucleoside analogue (WNA-βT) containing an ortho-methyl-substituted phenyl ring.
    Aoki E; Taniguchi Y; Wada Y; Sasaki S
    Chembiochem; 2012 May; 13(8):1152-60. PubMed ID: 22549913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting neighbouring poly(purine.pyrimidine) sequences located in the human bcr promoter by triplex-forming oligonucleotides.
    Xodo LE; Rathinavelan T; Quadrifoglio F; Manzini G; Yathindra N
    Eur J Biochem; 2001 Feb; 268(3):656-64. PubMed ID: 11168404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence-specific DNA-triplex formation at imperfect homopurine-homopyrimidine sequences within a DNA plasmid.
    Xodo LE; Alunni-Fabbroni M; Manzini G; Quadrifoglio F
    Eur J Biochem; 1993 Mar; 212(2):395-401. PubMed ID: 8444176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific recognition of CG base pairs by 2-deoxynebularine within the purine.purine.pyrimidine triple-helix motif.
    Stilz HU; Dervan PB
    Biochemistry; 1993 Mar; 32(9):2177-85. PubMed ID: 8443159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Competitive triplex/quadruplex equilibria involving guanine-rich oligonucleotides.
    Olivas WM; Maher LJ
    Biochemistry; 1995 Jan; 34(1):278-84. PubMed ID: 7819208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intramolecular triple-helix formation at (PunPyn).(PunPyn) tracts: recognition of alternate strands via Pu.PuPy and Py.PuPy base triplets.
    Jayasena SD; Johnston BH
    Biochemistry; 1992 Jan; 31(2):320-7. PubMed ID: 1731890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stabilization of intramolecular triple/single-strand structure by cationic peptides.
    Potaman VN; Sinden RR
    Biochemistry; 1998 Sep; 37(37):12952-61. PubMed ID: 9737875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monovalent cation effects on intermolecular purine-purine-pyrimidine triple-helix formation.
    Cheng AJ; Van Dyke MW
    Nucleic Acids Res; 1993 Dec; 21(24):5630-5. PubMed ID: 8284208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyrimidine-purine-pyrimidine triplex DNA stabilization in the presence of tetramine and pentamine analogues of spermine.
    Thomas TJ; Ashley C; Thomas T; Shirahata A; Sigal LH; Lee JS
    Biochem Cell Biol; 1997; 75(3):207-15. PubMed ID: 9404640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stable oligonucleotide-directed triplex formation at target sites with CG interruptions: strong sequence-specific recognition by 2',4'-bridged nucleic-acid-containing 2-pyridones under physiological conditions.
    Obika S; Hari Y; Sekiguchi M; Imanishi T
    Chemistry; 2002 Oct; 8(20):4796-802. PubMed ID: 12561120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oligodeoxyribonucleotide length and sequence effects on intermolecular purine-purine-pyrimidine triple-helix formation.
    Cheng AJ; Van Dyke MW
    Nucleic Acids Res; 1994 Nov; 22(22):4742-7. PubMed ID: 7984426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Triplex DNA structures.
    Frank-Kamenetskii MD; Mirkin SM
    Annu Rev Biochem; 1995; 64():65-95. PubMed ID: 7574496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An intramolecular triplex structure from non-mirror repeated sequence containing both Py:Pu.Py and Pu:Pu.Py triads.
    Klysik J
    J Mol Biol; 1995 Feb; 245(5):499-507. PubMed ID: 7844822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oligonucleotide-directed triple helix formation at adjacent oligopurine and oligopyrimidine DNA tracts by alternate strand recognition.
    Jayasena SD; Johnston BH
    Nucleic Acids Res; 1992 Oct; 20(20):5279-88. PubMed ID: 1437547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU.
    Gowers DM; Bijapur J; Brown T; Fox KR
    Biochemistry; 1999 Oct; 38(41):13747-58. PubMed ID: 10521282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of intermolecular triplex formation on the yield of cyclobutane photodimers in DNA.
    Malkov VA; Soyfer VN; Frank-Kamenetskii MD
    Nucleic Acids Res; 1992 Sep; 20(18):4889-95. PubMed ID: 1408804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron microscopy visualization of oligonucleotide binding to duplex DNA via triplex formation.
    Cherny DI; Malkov VA; Volodin AA; Frank-Kamenetskii MD
    J Mol Biol; 1993 Mar; 230(2):379-83. PubMed ID: 8464052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for (PNA)2/DNA triplex structure upon binding of PNA to dsDNA by strand displacement.
    Nielsen PE; Egholm M; Buchardt O
    J Mol Recognit; 1994 Sep; 7(3):165-70. PubMed ID: 7880540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.