BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 7578116)

  • 1. Sequence-selective DNA recognition and photocleavage: a comparison of enantiomers of Rh(en)2phi3+.
    Shields TP; Barton JK
    Biochemistry; 1995 Nov; 34(46):15037-48. PubMed ID: 7578116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural examination of enantioselective intercalation: 1H NMR of Rh(en)2phi3+ isomers bound to d(GTGCAC)2.
    Shields TP; Barton JK
    Biochemistry; 1995 Nov; 34(46):15049-56. PubMed ID: 7578117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlations of crystal structures of DNA oligonucleotides with enantioselective recognition by Rh(phen)2phi3+: probes of DNA propeller twisting in solution.
    Campisi D; Morii T; Barton JK
    Biochemistry; 1994 Apr; 33(14):4130-9. PubMed ID: 8155630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential DNA recognition by the enantiomers of 1-Rh(MGP)2 phi: a combination of shape selection and direct readout.
    Franklin SJ; Barton JK
    Biochemistry; 1998 Nov; 37(46):16093-105. PubMed ID: 9819202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-specific recognition of DNA by phenanthrenequinone diimine complexes of rhodium(III): importance of steric and van der Waals interactions.
    Sitlani A; Barton JK
    Biochemistry; 1994 Oct; 33(40):12100-8. PubMed ID: 7918431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbing the DNA sequence selectivity of metallointercalator-peptide conjugates by single amino acid modification.
    Hastings CA; Barton JK
    Biochemistry; 1999 Aug; 38(31):10042-51. PubMed ID: 10433711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of tertiary structure in tRNAs by Rh(phen)2phi3+, a new reagent for RNA structure-function mapping.
    Chow CS; Behlen LS; Uhlenbeck OC; Barton JK
    Biochemistry; 1992 Feb; 31(4):972-82. PubMed ID: 1734973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of base mismatches in DNA by 5,6-chrysenequinone diimine complexes of rhodium(III): a proposed mechanism for preferential binding in destabilized regions of the double helix.
    Jackson BA; Barton JK
    Biochemistry; 2000 May; 39(20):6176-82. PubMed ID: 10821692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized Rhodium Intercalators for DNA Recognition.
    Terbrueggen RH; Johann TW; Barton JK
    Inorg Chem; 1998 Dec; 37(26):6874-6883. PubMed ID: 11670824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delineation of structural domains in eukaryotic 5S rRNA with a rhodium probe.
    Chow CS; Hartmann KM; Rawlings SL; Huber PW; Barton JK
    Biochemistry; 1992 Apr; 31(13):3534-42. PubMed ID: 1554733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of metallointercalator-DNA conjugates on a solid support.
    Holmlin RE; Dandliker PJ; Barton JK
    Bioconjug Chem; 1999; 10(6):1122-30. PubMed ID: 10563783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific inhibition of transcription factor binding to DNA by a metallointercalator.
    Odom DT; Parker CS; Barton JK
    Biochemistry; 1999 Apr; 38(16):5155-63. PubMed ID: 10213621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rh(phen)2phi3+ as a shape-selective probe of triple helices.
    Lim AC; Barton JK
    Biochemistry; 1998 Jun; 37(25):9138-46. PubMed ID: 9636060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the Tat-binding site of bovine immunodeficiency virus TAR RNA with a shape-selective rhodium complex.
    Lim AC; Barton JK
    Bioorg Med Chem; 1997 Jun; 5(6):1131-6. PubMed ID: 9222507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of duplex DNA structure and suppression of transcription in vitro by bis(quinone diimine) complexes of rhodium(III) and ruthenium(II).
    Fu PK; Bradley PM; Turro C
    Inorg Chem; 2003 Feb; 42(3):878-84. PubMed ID: 12562203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing site specificity of DNA binding metallointercalators by NMR spectroscopy and molecular modeling.
    Proudfoot EM; Mackay JP; Karuso P
    Biochemistry; 2001 Apr; 40(15):4867-78. PubMed ID: 11294655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition.
    Junicke H; Hart JR; Kisko J; Glebov O; Kirsch IR; Barton JK
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3737-42. PubMed ID: 12610209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range photoinduced electron transfer through a DNA helix.
    Murphy CJ; Arkin MR; Jenkins Y; Ghatlia ND; Bossmann SH; Turro NJ; Barton JK
    Science; 1993 Nov; 262(5136):1025-9. PubMed ID: 7802858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rates of DNA-mediated electron transfer between metallointercalators.
    Arkin MR; Stemp ED; Holmlin RE; Barton JK; Hörmann A; Olson EJ; Barbara PF
    Science; 1996 Jul; 273(5274):475-80. PubMed ID: 8662532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of DNA base pair mismatches by a cyclometalated Rh(III) intercalator.
    Kisko JL; Barton JK
    Inorg Chem; 2000 Oct; 39(21):4942-9. PubMed ID: 11196975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.