These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 7578121)

  • 1. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function.
    Li Z; Meighen EA
    Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases.
    Valkova N; Szittner R; Meighen EA
    Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of the bacterial luciferase-flavin mononucleotide complex combining flexible docking with structure-activity data.
    Lin LY; Sulea T; Szittner R; Vassilyev V; Purisima EO; Meighen EA
    Protein Sci; 2001 Aug; 10(8):1563-71. PubMed ID: 11468353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral properties of Trp182, Trp194, and Trp250 on the alpha subunit of bacterial luciferase.
    Li Z; Valkova N; Meighen E
    Biochem Biophys Res Commun; 1999 Oct; 263(3):820-4. PubMed ID: 10512764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of mutations of the alpha His45 residue of Vibrio harveyi luciferase on the yield and reactivity of the flavin peroxide intermediate.
    Li H; Ortego BC; Maillard KI; Willson RC; Tu SC
    Biochemistry; 1999 Apr; 38(14):4409-15. PubMed ID: 10194361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase.
    Abu-Soud HM; Clark AC; Francisco WA; Baldwin TO; Raushel FM
    J Biol Chem; 1993 Apr; 268(11):7699-706. PubMed ID: 8463299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase.
    Lin LY; Szittner R; Friedman R; Meighen EA
    Biochemistry; 2004 Mar; 43(11):3183-94. PubMed ID: 15023068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acid-enhanced binding of flavin mononucleotide to bacterial luciferase measured by steady-state fluorescence.
    Li Z; Meighen EA
    Biochem Biophys Res Commun; 1992 Oct; 188(2):497-502. PubMed ID: 1445293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between the conserved alpha subunit arginine 107 and effects of phosphate on the activity and stability of Vibrio harveyi luciferase.
    Moore C; Lei B; Tu SC
    Arch Biochem Biophys; 1999 Oct; 370(1):45-50. PubMed ID: 10496975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implications of the reactive thiol and the proximal non-proline cis-peptide bond in the Structure and function of Vibrio harveyi luciferase.
    Lin LY; Sulea T; Szittner R; Kor C; Purisima EO; Meighen EA
    Biochemistry; 2002 Aug; 41(31):9938-45. PubMed ID: 12146958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay.
    Hosseinkhani S; Szittner R; Meighen EA
    Biochem J; 2005 Jan; 385(Pt 2):575-80. PubMed ID: 15352872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of aldehyde inhibition of Vibrio harveyi luciferase. Identification of two aldehyde sites and relationship between aldehyde and flavin binding.
    Lei B; Cho KW; Tu SC
    J Biol Chem; 1994 Feb; 269(8):5612-8. PubMed ID: 8119897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random and site-directed mutagenesis of bacterial luciferase: investigation of the aldehyde binding site.
    Chen LH; Baldwin TO
    Biochemistry; 1989 Mar; 28(6):2684-9. PubMed ID: 2730882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of bacterial luciferase beta 2 homodimer: implications for flavin binding.
    Tanner JJ; Miller MD; Wilson KS; Tu SC; Krause KL
    Biochemistry; 1997 Jan; 36(4):665-72. PubMed ID: 9020763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional implications of the unstructured loop in the (beta/alpha)(8) barrel structure of the bacterial luciferase alpha subunit.
    Sparks JM; Baldwin TO
    Biochemistry; 2001 Dec; 40(50):15436-43. PubMed ID: 11735428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent polyene aliphatics as spectroscopic and mechanistic probes for bacterial luciferase: evidence against carbonyl product from aldehyde as the primary excited species.
    Cho KW; Tu SC; Shao R
    Photochem Photobiol; 1993 Feb; 57(2):396-402. PubMed ID: 8451303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of bacterial luciferase with aldehyde substrates and inhibitors.
    Francisco WA; Abu-Soud HM; Baldwin TO; Raushel FM
    J Biol Chem; 1993 Nov; 268(33):24734-41. PubMed ID: 8227032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Vibrio harveyi luciferase beta subunit functionality and the intersubunit domain by site-directed mutagenesis.
    Xin X; Xi L; Tu SC
    Biochemistry; 1994 Oct; 33(40):12194-201. PubMed ID: 7918440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subunit interactions and the role of the luxA polypeptide in controlling thermal stability and catalytic properties in recombinant luciferase hybrids.
    Li Z; Szittner R; Meighen EA
    Biochim Biophys Acta; 1993 Oct; 1158(2):137-45. PubMed ID: 8399314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and catalytic inactivity of the bacterial luciferase neutral flavin radical.
    Kurfürst M; Ghisla S; Presswood R; Hastings JW
    Eur J Biochem; 1982 Apr; 123(2):355-61. PubMed ID: 6978813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.