These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 7578124)

  • 21. Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments.
    Mizukami T; Abe Y; Maki K
    PLoS One; 2015; 10(8):e0134238. PubMed ID: 26244984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between equilibrium amide proton exchange behavior and the folding pathway of barnase.
    Perrett S; Clarke J; Hounslow AM; Fersht AR
    Biochemistry; 1995 Jul; 34(29):9288-98. PubMed ID: 7626599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The folding kinetics and thermodynamics of the Fyn-SH3 domain.
    Plaxco KW; Guijarro JI; Morton CJ; Pitkeathly M; Campbell ID; Dobson CM
    Biochemistry; 1998 Feb; 37(8):2529-37. PubMed ID: 9485402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defining folding and unfolding reactions of apocytochrome b5 using equilibrium and kinetic fluorescence measurements.
    Manyusa S; Whitford D
    Biochemistry; 1999 Jul; 38(29):9533-40. PubMed ID: 10413531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamics of transient conformations in the folding pathway of barnase: reorganization of the folding intermediate at low pH.
    Oliveberg M; Fersht AR
    Biochemistry; 1996 Feb; 35(8):2738-49. PubMed ID: 8611580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of folding and unfolding reactions of cytochrome b5.
    Manyusa S; Mortuza G; Whitford D
    Biochemistry; 1999 Oct; 38(43):14352-62. PubMed ID: 10572010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acidic conditions stabilise intermediates populated during the folding of Im7 and Im9.
    Gorski SA; Capaldi AP; Kleanthous C; Radford SE
    J Mol Biol; 2001 Sep; 312(4):849-63. PubMed ID: 11575937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Equilibrium and transient intermediates in folding of human macrophage migration inhibitory factor.
    Zerovnik E; Janjić V; Francky A; Mozetic-Francky B
    Eur J Biochem; 1999 Mar; 260(3):609-18. PubMed ID: 10102988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic and kinetic stability of penicillin acylase from Escherichia coli.
    Grinberg VY; Burova TV; Grinberg NV; Shcherbakova TA; Guranda DT; Chilov GG; Svedas VK
    Biochim Biophys Acta; 2008 May; 1784(5):736-46. PubMed ID: 18314015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The three-dimensional structure of human procarboxypeptidase A2. Deciphering the basis of the inhibition, activation and intrinsic activity of the zymogen.
    García-Sáez I; Reverter D; Vendrell J; Avilés FX; Coll M
    EMBO J; 1997 Dec; 16(23):6906-13. PubMed ID: 9384570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Folding and stability of a fibronectin type III domain of human tenascin.
    Clarke J; Hamill SJ; Johnson CM
    J Mol Biol; 1997 Aug; 270(5):771-8. PubMed ID: 9245604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures.
    Alexander P; Fahnestock S; Lee T; Orban J; Bryan P
    Biochemistry; 1992 Apr; 31(14):3597-603. PubMed ID: 1567818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid folding with and without populated intermediates in the homologous four-helix proteins Im7 and Im9.
    Ferguson N; Capaldi AP; James R; Kleanthous C; Radford SE
    J Mol Biol; 1999 Mar; 286(5):1597-608. PubMed ID: 10064717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Folding and stability of endoglucanase III, a single-domain cellulase from Trichoderma reesei.
    Arunachalam U; Kellis JT
    Biochemistry; 1996 Sep; 35(35):11379-85. PubMed ID: 8784193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disulfide formation and stability of a cysteine-rich repeat protein from Helicobacter pylori.
    Devi VS; Sprecher CB; Hunziker P; Mittl PR; Bosshard HR; Jelesarov I
    Biochemistry; 2006 Feb; 45(6):1599-607. PubMed ID: 16460007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic analysis of the chemotactic protein from Escherichia coli, CheY.
    Filimonov VV; Prieto J; Martinez JC; Bruix M; Mateo PL; Serrano L
    Biochemistry; 1993 Nov; 32(47):12906-21. PubMed ID: 8251514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag.
    Kaplan W; Hüsler P; Klump H; Erhardt J; Sluis-Cremer N; Dirr H
    Protein Sci; 1997 Feb; 6(2):399-406. PubMed ID: 9041642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9.
    Sato S; Raleigh DP
    J Mol Biol; 2002 Apr; 318(2):571-82. PubMed ID: 12051860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unfolding and refolding of Coprinus cinereus peroxidase at high pH, in urea, and at high temperature. Effect of organic and ionic additives on these processes.
    Tams JW; Welinder KG
    Biochemistry; 1996 Jun; 35(23):7573-9. PubMed ID: 8652538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.