BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 7578128)

  • 1. Structure of both the ligand- and lipid-dependent channel-inactive states of the nicotinic acetylcholine receptor probed by FTIR spectroscopy and hydrogen exchange.
    Méthot N; Demers CN; Baenziger JE
    Biochemistry; 1995 Nov; 34(46):15142-9. PubMed ID: 7578128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure of the exchange-resistant core from the nicotinic acetylcholine receptor probed directly by infrared spectroscopy and hydrogen/deuterium exchange.
    Méthot N; Baenziger JE
    Biochemistry; 1998 Oct; 37(42):14815-22. PubMed ID: 9778355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary structure of the nicotinic acetylcholine receptor: implications for structural models of a ligand-gated ion channel.
    Méthot N; McCarthy MP; Baenziger JE
    Biochemistry; 1994 Jun; 33(24):7709-17. PubMed ID: 7516704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desensitization of the nicotinic acetylcholine receptor mainly involves a structural change in solvent-accessible regions of the polypeptide backbone.
    Baenziger JE; Chew JP
    Biochemistry; 1997 Mar; 36(12):3617-24. PubMed ID: 9132013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid composition alters drug action at the nicotinic acetylcholine receptor.
    Baenziger JE; Ryan SE; Goodreid MM; Vuong NQ; Sturgeon RM; daCosta CJ
    Mol Pharmacol; 2008 Mar; 73(3):880-90. PubMed ID: 18055762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal dynamics of the nicotinic acetylcholine receptor in reconstituted membranes.
    Baenziger JE; Darsaut TE; Morris ML
    Biochemistry; 1999 Apr; 38(16):4905-11. PubMed ID: 10213591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier transform infrared and hydrogen/deuterium exchange reveal an exchange-resistant core of alpha-helical peptide hydrogens in the nicotinic acetylcholine receptor.
    Baenziger JE; Méthot N
    J Biol Chem; 1995 Dec; 270(49):29129-37. PubMed ID: 7493938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of membrane lipid composition on the conformational equilibria of the nicotinic acetylcholine receptor.
    Baenziger JE; Morris ML; Darsaut TE; Ryan SE
    J Biol Chem; 2000 Jan; 275(2):777-84. PubMed ID: 10625607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural effects of neutral and anionic lipids on the nicotinic acetylcholine receptor. An infrared difference spectroscopy study.
    Ryan SE; Demers CN; Chew JP; Baenziger JE
    J Biol Chem; 1996 Oct; 271(40):24590-7. PubMed ID: 8798723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatidic acid and phosphatidylserine have distinct structural and functional interactions with the nicotinic acetylcholine receptor.
    daCosta CJ; Wagg ID; McKay ME; Baenziger JE
    J Biol Chem; 2004 Apr; 279(15):14967-74. PubMed ID: 14752108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FTIR analysis of nicotinic acetylcholine receptor secondary structure in reconstituted membranes.
    Butler DH; McNamee MG
    Biochim Biophys Acta; 1993 Jul; 1150(1):17-24. PubMed ID: 8392868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The net orientation of nicotinic receptor transmembrane alpha-helices in the resting and desensitized states.
    Hill DG; Baenziger JE
    Biophys J; 2006 Jul; 91(2):705-14. PubMed ID: 16648164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intramembrane aromatic interactions influence the lipid sensitivities of pentameric ligand-gated ion channels.
    Carswell CL; Sun J; Baenziger JE
    J Biol Chem; 2015 Jan; 290(4):2496-507. PubMed ID: 25519904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the structure of the uncoupled nicotinic acetylcholine receptor.
    Sun J; Comeau JF; Baenziger JE
    Biochim Biophys Acta Biomembr; 2017 Feb; 1859(2):146-154. PubMed ID: 27871840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional changes induced in the nicotinic acetylcholine receptor by membrane phospholipids.
    Fernández-Carvajal AM; Encinar JA; Poveda JA; de Juan E; Martínez-Pinna J; Ivorra I; Ferragut JA; Morales A; González-Ros JM
    J Mol Neurosci; 2006; 30(1-2):121-4. PubMed ID: 17192656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the structure of the affinity-purified and lipid-reconstituted torpedo nicotinic acetylcholine receptor.
    Hamouda AK; Chiara DC; Blanton MP; Cohen JB
    Biochemistry; 2008 Dec; 47(48):12787-94. PubMed ID: 18991407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Downscaling Fourier transform infrared spectroscopy to the micrometer and nanogram scale: secondary structure of serotonin and acetylcholine receptors.
    Rigler P; Ulrich WP; Hovius R; Ilegems E; Pick H; Vogel H
    Biochemistry; 2003 Dec; 42(47):14017-22. PubMed ID: 14636070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The alphaM1 transmembrane segment of the nicotinic acetylcholine receptor interacts strongly with model membranes.
    De Planque MR; Rijkers DT; Liskamp RM; Separovic F
    Magn Reson Chem; 2004 Feb; 42(2):148-54. PubMed ID: 14745794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fourier-transform infrared spectroscopic investigation of the hydrogen-deuterium exchange and secondary structure of the 28-kDa channel-forming integral membrane protein (CHIP28).
    Haris PI; Chapman D; Benga G
    Eur J Biochem; 1995 Oct; 233(2):659-64. PubMed ID: 7588813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes.
    Dreger M; Krauss M; Herrmann A; Hucho F
    Biochemistry; 1997 Jan; 36(4):839-47. PubMed ID: 9020782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.