These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 7578151)
41. Kinetic and spectroscopic studies of Tritrichomonas foetus low-molecular weight phosphotyrosyl phosphatase. Hydrogen bond networks and electrostatic effects. Thomas CL; McKinnon E; Granger BL; Harms E; Van Etten RL Biochemistry; 2002 Dec; 41(52):15601-9. PubMed ID: 12501188 [TBL] [Abstract][Full Text] [Related]
42. Mechanistic studies on full length and the catalytic domain of the tandem SH2 domain-containing protein tyrosine phosphatase: analysis of phosphoenzyme levels and Vmax stimulatory effects of glycerol and of a phosphotyrosyl peptide ligand. Wang J; Walsh CT Biochemistry; 1997 Mar; 36(10):2993-9. PubMed ID: 9062130 [TBL] [Abstract][Full Text] [Related]
44. Activation of pp60c-src transforming potential by mutations altering the structure of an amino terminal domain containing residues 90-95. Potts WM; Reynolds AB; Lansing TJ; Parsons JT Oncogene Res; 1988; 3(4):343-55. PubMed ID: 2465527 [TBL] [Abstract][Full Text] [Related]
45. The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: new insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis. Erzberger JP; Wilson DM J Mol Biol; 1999 Jul; 290(2):447-57. PubMed ID: 10390343 [TBL] [Abstract][Full Text] [Related]
46. The amino-terminal region of pp60c-src has a modulatory role and contains multiple sites of tyrosine phosphorylation. Espino PC; Harvey R; Schweickhardt RL; White GA; Smith AE; Cheng SH Oncogene; 1990 Mar; 5(3):283-93. PubMed ID: 1690377 [TBL] [Abstract][Full Text] [Related]
47. Computational binding studies of human pp60c-src SH2 domain with a series of nonpeptide, phosphophenyl-containing ligands. Price DJ; Jorgensen WL Bioorg Med Chem Lett; 2000 Sep; 10(18):2067-70. PubMed ID: 10999472 [TBL] [Abstract][Full Text] [Related]
48. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850 [TBL] [Abstract][Full Text] [Related]
49. Novel mechanism of regulation of the non-receptor protein tyrosine kinase Csk: insights from NMR mapping studies and site-directed mutagenesis. Shekhtman A; Ghose R; Wang D; Cole PA; Cowburn D J Mol Biol; 2001 Nov; 314(1):129-38. PubMed ID: 11724538 [TBL] [Abstract][Full Text] [Related]
50. Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase. Bradshaw JM; Mitaxov V; Waksman G J Mol Biol; 1999 Nov; 293(4):971-85. PubMed ID: 10543978 [TBL] [Abstract][Full Text] [Related]
51. Nuclear magnetic resonance solution structure of the growth factor receptor-bound protein 2 Src homology 2 domain. Thornton KH; Mueller WT; McConnell P; Zhu G; Saltiel AR; Thanabal V Biochemistry; 1996 Sep; 35(36):11852-64. PubMed ID: 8794768 [TBL] [Abstract][Full Text] [Related]
52. Exploration of the sequence specificity of pp60c-src tyrosine kinase. Minimal peptide sequence required for maximal activity. Edison AM; Barker SC; Kassel DB; Luther MA; Knight WB J Biol Chem; 1995 Nov; 270(45):27112-5. PubMed ID: 7592964 [TBL] [Abstract][Full Text] [Related]
54. A catalytic mechanism for the dual-specific phosphatases. Denu JM; Dixon JE Proc Natl Acad Sci U S A; 1995 Jun; 92(13):5910-4. PubMed ID: 7597052 [TBL] [Abstract][Full Text] [Related]
55. Mutagenesis of putative catalytic and regulatory residues of Streptomyces chromofuscus phospholipase D differentially modifies phosphatase and phosphodiesterase activities. Zambonelli C; Casali M; Roberts MF J Biol Chem; 2003 Dec; 278(52):52282-9. PubMed ID: 14557260 [TBL] [Abstract][Full Text] [Related]
56. Synthesis of phosphotyrosine-containing peptides and their use as substrates for protein tyrosine phosphatases. Ottinger EA; Shekels LL; Bernlohr DA; Barany G Biochemistry; 1993 Apr; 32(16):4354-61. PubMed ID: 7682846 [TBL] [Abstract][Full Text] [Related]
57. Src regulated by C-terminal phosphorylation is monomeric. Weijland A; Williams JC; Neubauer G; Courtneidge SA; Wierenga RK; Superti-Furga G Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3590-5. PubMed ID: 9108021 [TBL] [Abstract][Full Text] [Related]
58. Recombinant pp60c-src from baculovirus-infected insect cells: purification and characterization. Budde RJ; Ramdas L; Ke S Prep Biochem; 1993 Nov; 23(4):493-515. PubMed ID: 7504254 [TBL] [Abstract][Full Text] [Related]
59. The role of the linker between the SH2 domain and catalytic domain in the regulation and function of Src. Gonfloni S; Williams JC; Hattula K; Weijland A; Wierenga RK; Superti-Furga G EMBO J; 1997 Dec; 16(24):7261-71. PubMed ID: 9405355 [TBL] [Abstract][Full Text] [Related]