These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7578151)

  • 81. Phosphoglycolate phosphatase. Effect of cation and pH on activity.
    Christeller JT; Tolbert NE
    J Biol Chem; 1978 Mar; 253(6):1786-90. PubMed ID: 24629
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Histidine 167 is the phosphate acceptor in glucose-6-phosphatase-beta forming a phosphohistidine enzyme intermediate during catalysis.
    Ghosh A; Shieh JJ; Pan CJ; Chou JY
    J Biol Chem; 2004 Mar; 279(13):12479-83. PubMed ID: 14718531
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Phosphorus-31 nuclear magnetic resonance studies of the two phosphoserine residues of hen egg white ovalbumin.
    Vogel HJ; Bridger WA
    Biochemistry; 1982 Nov; 21(23):5825-31. PubMed ID: 6295445
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Structural and functional characterization of the 2H-phosphatase domain of Sts-2 reveals an acid-dependent phosphatase activity.
    Chen Y; Jakoncic J; Carpino N; Nassar N
    Biochemistry; 2009 Mar; 48(8):1681-90. PubMed ID: 19196006
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Molecular basis for the local conformational rearrangement of human phosphoserine phosphatase.
    Kim HY; Heo YS; Kim JH; Park MH; Moon J; Kim E; Kwon D; Yoon J; Shin D; Jeong EJ; Park SY; Lee TG; Jeon YH; Ro S; Cho JM; Hwang KY
    J Biol Chem; 2002 Nov; 277(48):46651-8. PubMed ID: 12213811
    [TBL] [Abstract][Full Text] [Related]  

  • 86. 1H- and 19F-NMR approaches to the study of the structure of proteins larger than 25 kDa.
    Gettins PG
    Int J Biol Macromol; 1994 Oct; 16(5):227-35. PubMed ID: 7893627
    [TBL] [Abstract][Full Text] [Related]  

  • 87. MS/NMR: a structure-based approach for discovering protein ligands and for drug design by coupling size exclusion chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy.
    Moy FJ; Haraki K; Mobilio D; Walker G; Powers R; Tabei K; Tong H; Siegel MM
    Anal Chem; 2001 Feb; 73(3):571-81. PubMed ID: 11217765
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Catalytic DNA with phosphatase activity.
    Chandrasekar J; Silverman SK
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5315-20. PubMed ID: 23509279
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A novel hydrolytic dehalogenase for the chlorinated aromatic compound chlorothalonil.
    Wang G; Li R; Li S; Jiang J
    J Bacteriol; 2010 Jun; 192(11):2737-45. PubMed ID: 20363940
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Characterization of paraoxonase activity in pericardial fluid: usefulness as a marker of coronary disease.
    Hernández AF; Pla A; Valenzuela A; Gil F; Villanueva E
    Chem Biol Interact; 1993 Jun; 87(1-3):173-7. PubMed ID: 8393740
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A salt bridge of the C-terminal carboxyl group regulates PHPT1 substrate affinity and catalytic activity.
    Zavala E; Dansereau S; Burke MJ; Lipchock JM; Maschietto F; Batista V; Loria JP
    Protein Sci; 2024 Jun; 33(6):e5009. PubMed ID: 38747379
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Topochemical catalysis achieved by structure-based ligand design.
    Katz BA; Cass RT; Liu B; Arze R; Collins N
    J Biol Chem; 1995 Dec; 270(52):31210-8. PubMed ID: 8537386
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Biochemical characterization of aspartyl phosphate phosphatase interaction with a phosphorylated response regulator and its inhibition by a pentapeptide.
    Ishikawa S; Core L; Perego M
    J Biol Chem; 2002 Jun; 277(23):20483-9. PubMed ID: 11923303
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Secreted phosphatase activity induced by dimethyl sulfoxide in Herpetomonas samuelpessoai.
    Santos AL; Souto-Padrón T; Alviano CS; Lopes AH; Soares RM; Meyer-Fernandes JR
    Arch Biochem Biophys; 2002 Sep; 405(2):191-8. PubMed ID: 12220532
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Two tricks in one bundle: helix-turn-helix gains enzymatic activity.
    Grishin NV
    Nucleic Acids Res; 2000 Jun; 28(11):2229-33. PubMed ID: 10871343
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Catalytic activity of the SH2 domain of human pp60c-src; evidence from NMR, mass spectrometry, site-directed mutagenesis and kinetic studies for an inherent phosphatase activity.
    Boerner RJ; Consler TG; Gampe RT; Weigl D; Willard DH; Davis DG; Edison AM; Loganzo F; Kassel DB; Xu RX
    Biochemistry; 1995 Nov; 34(46):15351-8. PubMed ID: 7578151
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Solution structure of the human pp60c-src SH2 domain complexed with a phosphorylated tyrosine pentapeptide.
    Xu RX; Word JM; Davis DG; Rink MJ; Willard DH; Gampe RT
    Biochemistry; 1995 Feb; 34(7):2107-21. PubMed ID: 7532003
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Examination of the dephosphorylation reactions catalyzed by pp60c-src tyrosine kinase explores the roles of autophosphorylation and SH2 ligand binding.
    Boerner RJ; Kassel DB; Edison AM; Knight WB
    Biochemistry; 1995 Nov; 34(45):14852-60. PubMed ID: 7578095
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 100. In vitro phosphorylation of the epidermal growth factor receptor autophosphorylation domain by c-src: identification of phosphorylation sites and c-src SH2 domain binding sites.
    Lombardo CR; Consler TG; Kassel DB
    Biochemistry; 1995 Dec; 34(50):16456-66. PubMed ID: 8845374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.