These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7578235)

  • 1. Friction analysis of kinetic schemes: the friction coefficient.
    Lolkema JS
    Biochim Biophys Acta; 1995 Oct; 1252(2):284-94. PubMed ID: 7578235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control theory of one enzyme.
    Kholodenko BN; Westerhoff HV
    Biochim Biophys Acta; 1994 Oct; 1208(2):294-305. PubMed ID: 7947961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control analysis of transition times in metabolic systems.
    Meléndez-Hevia E; Torres NV; Sicilia J; Kacser H
    Biochem J; 1990 Jan; 265(1):195-202. PubMed ID: 2302166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple rate-determining steps for nonideal and fractal kinetics.
    Vlad MO; Popa VT; Segal E; Ross J
    J Phys Chem B; 2005 Feb; 109(6):2455-60. PubMed ID: 16851241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control analysis of metabolic networks. 1. Homogeneous functions and the summation theorems for control coefficients.
    Giersch C
    Eur J Biochem; 1988 Jun; 174(3):509-13. PubMed ID: 3391169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of temporal analysis and control analysis of metabolic systems.
    Easterby JS
    Biochem J; 1990 Jul; 269(1):255-9. PubMed ID: 2375754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sum of the control coefficients of all enzymes on the flux through a group-transfer pathway can be as high as two.
    van Dam K; van der Vlag J; Kholodenko BN; Westerhoff HV
    Eur J Biochem; 1993 Mar; 212(3):791-9. PubMed ID: 8462550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rates of reactions catalysed by a dimeric enzyme. Effects of the reaction scheme and the kinetic parameters on co-operativity.
    Ishikawa H; Ogino H; Oshida H
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):131-7. PubMed ID: 1741741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control analysis of single enzyme sequences with abortive complexes and random substrate binding.
    Schulz AR; Südi J
    J Theor Biol; 1996 Oct; 182(3):397-403. PubMed ID: 8944173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of ensemble averaging in enzyme kinetics.
    Masgrau L; Truhlar DG
    Acc Chem Res; 2015 Feb; 48(2):431-8. PubMed ID: 25539028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isomerization of the free enzyme versus induced fit: effects of steps involving induced fit that bypass enzyme isomerization on flux ratios and countertransport.
    Britton HG
    Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):187-99. PubMed ID: 9003418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General equation of steady-state enzyme kinetics using net rate constants and its applicaiton to the kinetic analysis of catalase reaction.
    Yomo T; Yamano T; Yamamoto K; Urabe I
    J Theor Biol; 1997 Oct; 188(3):301-12. PubMed ID: 9344734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of steady-state control in complex metabolic networks.
    Bohnensack R
    Biomed Biochim Acta; 1985; 44(11-12):1567-78. PubMed ID: 4091833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular basis of dominance.
    Kacser H; Burns JA
    Genetics; 1981; 97(3-4):639-66. PubMed ID: 7297851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the flux and transition time control coefficient profiles in a metabolic system in vitro and the effect of an external stimulator.
    Torres NV; Souto R; Meléndez-Hevia E
    Biochem J; 1989 Jun; 260(3):763-9. PubMed ID: 2764903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to derive flux control coefficients from the rate equations of classical enzyme kinetics.
    Südi J
    Math Biosci; 1996 Nov; 138(1):45-77. PubMed ID: 8942176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal analysis of metabolic systems and its application to metabolite channelling.
    Easterby JS
    J Mol Recognit; 1993 Dec; 6(4):179-85. PubMed ID: 7917413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control analysis applied to single enzymes: can an isolated enzyme have a unique rate-limiting step?
    Brown GC; Cooper CE
    Biochem J; 1993 Aug; 294 ( Pt 1)(Pt 1):87-94. PubMed ID: 8363590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the metabolic flux in a system with high enzyme concentrations and moiety-conserved cycles. The sum of the flux control coefficients can drop significantly below unity.
    Kholodenko BN; Lyubarev AE; Kurganov BI
    Eur J Biochem; 1992 Nov; 210(1):147-53. PubMed ID: 1446668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.