These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7578235)

  • 21. [Representation of the characteristic equation for an unbranched enzymatic reaction with an arbitrary number of steps as a polynomial].
    Skurida GI
    Biofizika; 1980; 25(3):428-31. PubMed ID: 7397258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative determination of the steady-state kinetics of multienzyme reactions using the algebraic rate equations for the component single-enzyme reactions.
    Stoner CD
    Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):585-93. PubMed ID: 8484738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic parameters of enzymatic reactions in states of maximal activity; an evolutionary approach.
    Heinrich R; Hoffmann E
    J Theor Biol; 1991 Jul; 151(2):249-83. PubMed ID: 1943142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interdependence between cooperativity and control coefficients.
    Canela EI; Franco R; Cascante M
    Biosystems; 1989; 23(1):7-14. PubMed ID: 2624889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simplifying principles for chemical and enzyme reaction kinetics.
    Klonowski W
    Biophys Chem; 1983 Sep; 18(2):73-87. PubMed ID: 6626688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic analysis of biphasic protein modification reactions. Cooperative effects.
    Rakitzis ET
    Biophys Chem; 1983 Sep; 18(2):133-7. PubMed ID: 6626686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic control and its analysis. Extensions to the theory and matrix method.
    Sauro HM; Small JR; Fell DA
    Eur J Biochem; 1987 May; 165(1):215-21. PubMed ID: 3569295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic efficiency, kinetic co-operativity of oligomeric enzymes and evolution.
    Ricard J; Noat G
    J Theor Biol; 1986 Dec; 123(4):431-51. PubMed ID: 3657187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alternative to the steady-state method: derivation of reaction rates from first-passage times and pathway probabilities.
    Ninio J
    Proc Natl Acad Sci U S A; 1987 Feb; 84(3):663-7. PubMed ID: 3468503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of reaction schemes using maximum rates of constituent steps.
    Motagamwala AH; Dumesic JA
    Proc Natl Acad Sci U S A; 2016 May; 113(21):E2879-88. PubMed ID: 27162366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic control analysis using transient metabolite concentrations. Determination of metabolite concentration control coefficients.
    Delgado J; Liao JC
    Biochem J; 1992 Aug; 285 ( Pt 3)(Pt 3):965-72. PubMed ID: 1497632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimisation of enzyme concentrations for unbranched reaction chains: the concept of combined response coefficient.
    de Vienne D; Bost B; Fiévet J; Dillmann C
    Acta Biotheor; 2001; 49(4):341-50. PubMed ID: 11804243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of computer algebra-techniques to metabolic control analysis.
    Bayram M; Celik E
    Comput Biol Chem; 2003 May; 27(2):141-6. PubMed ID: 12821311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Concerning the measurement of flux control coefficients by enzyme titration. Steady states, quasi-steady-states, and the role of time in control analytical experiments.
    Giersch C
    Eur J Biochem; 1995 Aug; 231(3):587-92. PubMed ID: 7649157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rate limitation within a single enzyme is directly related to enzyme intermediate levels.
    Kholodenko BN; Westerhoff HV; Brown GC
    FEBS Lett; 1994 Jul; 349(1):131-4. PubMed ID: 8045290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reaction rate theory: what it was, where is it today, and where is it going?
    Pollak E; Talkner P
    Chaos; 2005 Jun; 15(2):26116. PubMed ID: 16035918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transition from static to kinetic friction: insights from a 2D model.
    Trømborg J; Scheibert J; Amundsen DS; Thøgersen K; Malthe-Sørenssen A
    Phys Rev Lett; 2011 Aug; 107(7):074301. PubMed ID: 21902397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluxes, first passage times, and the reduction of hill diagrams.
    Kamp F; Szabo A
    Cell Biophys; 1988; 12():145-55. PubMed ID: 2453278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The elementary catalytic system model as a building unit of large enzymatic systems. General model.
    Borowiak MA
    Biophys Chem; 1988 Oct; 32(1):21-36. PubMed ID: 3233311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The control of cell metabolism for homogeneous vs. heterogeneous enzyme systems.
    Welch GR; Keleti T; Vértessy B
    J Theor Biol; 1988 Feb; 130(4):407-22. PubMed ID: 3184958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.