These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 7578315)

  • 1. [Global optimization of the conformational energy of oligopeptides using a tunnel algorithm].
    Petukhov MG; Dorofeev VE; Abagian RA; Mazur AK
    Biofizika; 1992; 37(2):226-30. PubMed ID: 7578315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice neural network minimization. Application of neural network optimization for locating the global-minimum conformations of proteins.
    Rabow AA; Scheraga HA
    J Mol Biol; 1993 Aug; 232(4):1157-68. PubMed ID: 8371272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational search of peptides and proteins: Monte Carlo minimization with an adaptive bias method applied to the heptapeptide deltorphin.
    Ozkan SB; Meirovitch H
    J Comput Chem; 2004 Mar; 25(4):565-72. PubMed ID: 14735574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining minimum energy conformations of polypeptides by dynamic programming.
    Vajda S; Delisi C
    Biopolymers; 1990 Dec; 29(14):1755-72. PubMed ID: 2207285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and accurate side-chain topology and energy refinement (FASTER) as a new method for protein structure optimization.
    Desmet J; Spriet J; Lasters I
    Proteins; 2002 Jul; 48(1):31-43. PubMed ID: 12012335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo sampling algorithm for searching a scale-transformed energy space of polypeptides.
    Nakamura H
    J Comput Chem; 2002 Mar; 23(4):511-6. PubMed ID: 11908088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein structure prediction with the UNRES force-field using Replica-Exchange Monte Carlo-with-Minimization; Comparison with MCM, CSA, and CFMC.
    Nanias M; Chinchio M; OƂdziej S; Czaplewski C; Scheraga HA
    J Comput Chem; 2005 Nov; 26(14):1472-86. PubMed ID: 16088925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing.
    Lee J; Scheraga HA; Rackovsky S
    Biopolymers; 1998 Aug; 46(2):103-16. PubMed ID: 9664844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of flexible cycloalkanes. Ab initio and DFT study of the conformational energy hypersurface of cyclononane.
    Suvire FD; Santagata LN; Bombasaro JA; Enriz RD
    J Comput Chem; 2006 Jan; 27(2):188-202. PubMed ID: 16323160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New developments of the electrostatically driven Monte Carlo method: test on the membrane-bound portion of melittin.
    Ripoll DR; Liwo A; Scheraga HA
    Biopolymers; 1998 Aug; 46(2):117-26. PubMed ID: 9664845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-directed tree search: an efficient systematic algorithm for finding the lowest energy conformation of molecules.
    Izgorodina EI; Lin CY; Coote ML
    Phys Chem Chem Phys; 2007 May; 9(20):2507-16. PubMed ID: 17508083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LOOPER: a molecular mechanics-based algorithm for protein loop prediction.
    Spassov VZ; Flook PK; Yan L
    Protein Eng Des Sel; 2008 Feb; 21(2):91-100. PubMed ID: 18194981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational searching using a population-based incremental learning algorithm.
    Long SM; Tran TT; Adams P; Darwen P; Smythe ML
    J Comput Chem; 2011 Jun; 32(8):1541-9. PubMed ID: 21284005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized-ensemble algorithms for molecular simulations of biopolymers.
    Mitsutake A; Sugita Y; Okamoto Y
    Biopolymers; 2001; 60(2):96-123. PubMed ID: 11455545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A predictive method for the evaluation of peptide binding in pocket 1 of HLA-DRB1 via global minimization of energy interactions.
    Androulakis IP; Nayak NN; Ierapetritou MG; Monos DS; Floudas CA
    Proteins; 1997 Sep; 29(1):87-102. PubMed ID: 9294869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ant algorithm for the conformational analysis of flexible molecules.
    Daeyaert F; De Jonge M; Koymans L; Vinkers M
    J Comput Chem; 2007 Apr; 28(5):890-8. PubMed ID: 17238172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Monte Carlo method for generating structures of short single-stranded DNA sequences.
    Erie DA; Breslauer KJ; Olson WK
    Biopolymers; 1993 Jan; 33(1):75-105. PubMed ID: 8427940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Necessary conditions for avoiding incorrect polypeptide folds in conformational search by energy minimization.
    Vajda S; Jafri MS; Sezerman OU; DeLisi C
    Biopolymers; 1993 Jan; 33(1):173-92. PubMed ID: 8427934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new hybrid algorithm for finding the lowest minima of potential surfaces: approach and application to peptides.
    Goldstein M; Fredj E; Gerber RB
    J Comput Chem; 2011 Jul; 32(9):1785-800. PubMed ID: 21455953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.