These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7578341)

  • 21. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [X-ray diffraction study of the water-total lipids system of retinal rods].
    Huynh S
    Biochimie; 1973; 55(4):430-4. PubMed ID: 4749723
    [No Abstract]   [Full Text] [Related]  

  • 23. Ultrastructure and organisation of the retina and pigment epithelium in the cutlips minnow, Exoglossum maxillingua (Cyprinidae, Teleostei).
    Collin SP; Collin HB; Ali MA
    Histol Histopathol; 1996 Jan; 11(1):55-69. PubMed ID: 8720448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrastructural analysis of arrestin distribution in mouse photoreceptors during dark/light cycle.
    Nir I; Ransom N
    Exp Eye Res; 1993 Sep; 57(3):307-18. PubMed ID: 8224018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synaptic growth in the rod terminals of mice after partial photoreceptor cell loss: a three-dimensional ultrastructural study.
    Jansen HG; Hawkins RK; Sanyal S
    Microsc Res Tech; 1997 Jan; 36(2):96-105. PubMed ID: 9015256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. X-ray diffraction and electron microscope study of phase separation in rod outer segment photoreceptor membrane multilayers.
    Gruner SM; Rothschild KJ; Clark NA
    Biophys J; 1982 Sep; 39(3):241-51. PubMed ID: 7139024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Photoinduced generation of a potential on the membrane of the photoreceptor membrane disk].
    Bol'shakov VI; Kalamkarov GR; Ostrovskiĭ MA
    Dokl Akad Nauk SSSR; 1978; 240(5):1241-4. PubMed ID: 679799
    [No Abstract]   [Full Text] [Related]  

  • 29. Hyperoxia, hyperglycemia, and photoreceptor sensitivity in normal and diabetic subjects.
    Kurtenbach A; Mayser HM; Jägle H; Fritsche A; Zrenner E
    Vis Neurosci; 2006; 23(3-4):651-61. PubMed ID: 16962009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light-induced acceleration of photoreceptor degeneration in transgenic mice expressing mutant rhodopsin.
    Naash ML; Peachey NS; Li ZY; Gryczan CC; Goto Y; Blanks J; Milam AH; Ripps H
    Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):775-82. PubMed ID: 8603862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unique functional properties of the APB sensitive and insensitive rod pathways signaling light decrements in mouse retinal ganglion cells.
    Wang GY
    Vis Neurosci; 2006; 23(1):127-35. PubMed ID: 16597356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retinoid cycling proteins redistribute in light-/dark-adapted octopus retinas.
    Robles LJ; Camacho JL; Torres SC; Flores A; Fariss RN; Matsumoto B
    J Comp Neurol; 1995 Aug; 358(4):605-14. PubMed ID: 7593753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Ion displacements in outer segments of retinal rods].
    Etingof RN; Berman AL; Govardovskiĭ VI; Leont'ev VG
    Ukr Biokhim Zh; 1971; 43(1):60-7. PubMed ID: 5556000
    [No Abstract]   [Full Text] [Related]  

  • 34. [Relation of the light sensitivity of the retinal rods to cyclic nucleotide metabolism].
    Bochkin LM; Zak PP; Ostrovskiĭ MA
    Fiziol Cheloveka; 1985; 11(1):159-61. PubMed ID: 3979704
    [No Abstract]   [Full Text] [Related]  

  • 35. Small-angle neutron and X-ray scattering analysis of the supramolecular organization of rhodopsin in photoreceptor membrane.
    Feldman TB; Ivankov OI; Kuklin AI; Murugova TN; Yakovleva MA; Smitienko OA; Kolchugina IB; Round A; Gordeliy VI; Belushkin AV; Ostrovsky MA
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):183000. PubMed ID: 31152688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the transduction mechanism in the photoreceptor cell of an invertebrate, studied by single photon responses.
    Stieve H
    Prog Clin Biol Res; 1984; 164():313-24. PubMed ID: 6097907
    [No Abstract]   [Full Text] [Related]  

  • 37. Structure of photoreceptor membranes.
    Worthington CR
    Fed Proc; 1971; 30(1):57-63. PubMed ID: 5539874
    [No Abstract]   [Full Text] [Related]  

  • 38. [Cooperative binding of calcium ions by photoreceptor membranes].
    Talako SA; Berman AL
    Biofizika; 1983; 28(4):653-7. PubMed ID: 6615904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A 12 A resolution X-ray diffraction study of the profile structure of isolated bovine retinal rod outer segment disk membranes.
    Pascolini D; Blasie JK; Gruner SM
    Biochim Biophys Acta; 1984 Oct; 777(1):9-20. PubMed ID: 6487620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intact photoreceptor membrane from bovine rod outer segment: size and shape in bleached state.
    Norisuye T; Hoffman WF; Yu H
    Biochemistry; 1976 Dec; 15(25):5678-82. PubMed ID: 999843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.