BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 7578916)

  • 1. o-Methoxy-4-alkylphenols that form quinone methides of intermediate reactivity are the most toxic in rat liver slices.
    Thompson DC; Perera K; Krol ES; Bolton JL
    Chem Res Toxicol; 1995; 8(3):323-7. PubMed ID: 7578916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of 4-alkyl substituents on the formation and reactivity of 2-methoxy-quinone methides: evidence that extended pi-conjugation dramatically stabilizes the quinone methide formed from eugenol.
    Bolton JL; Comeau E; Vukomanovic V
    Chem Biol Interact; 1995 Apr; 95(3):279-90. PubMed ID: 7728898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enzymatic formation and chemical reactivity of quinone methides correlate with alkylphenol-induced toxicity in rat hepatocytes.
    Bolton JL; Valerio LG; Thompson JA
    Chem Res Toxicol; 1992; 5(6):816-22. PubMed ID: 1489934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes.
    Iverson SL; Shen L; Anlar N; Bolton JL
    Chem Res Toxicol; 1996 Mar; 9(2):492-9. PubMed ID: 8839054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of the p-alkyl substituent on the isomerization of o-quinones to p-quinone methides: potential bioactivation mechanism for catechols.
    Iverson SL; Hu LQ; Vukomanovic V; Bolton JL
    Chem Res Toxicol; 1995 Jun; 8(4):537-44. PubMed ID: 7548733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of quinone methide reactivity on the alkylation of thiol and amino groups in proteins: studies utilizing amino acid and peptide models.
    Bolton JL; Turnipseed SB; Thompson JA
    Chem Biol Interact; 1997 Nov; 107(3):185-200. PubMed ID: 9448752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation.
    Krol ES; Bolton JL
    Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. p-Quinone methides are the major decomposition products of catechol estrogen o-quinones.
    Bolton JL; Shen L
    Carcinogenesis; 1996 May; 17(5):925-9. PubMed ID: 8640939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative metabolism, covalent binding and toxicity of BHT congeners in rat liver slices.
    Reed M; Fujiwara H; Thompson DC
    Chem Biol Interact; 2001 Nov; 138(2):155-70. PubMed ID: 11672698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of isomerization of 4-propyl-o-quinone to its tautomeric p-quinone methide.
    Bolton JL; Wu HM; Hu LQ
    Chem Res Toxicol; 1996; 9(1):109-113. PubMed ID: 8924578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinone methide formation from para isomers of methylphenol (cresol), ethylphenol, and isopropylphenol: relationship to toxicity.
    Thompson DC; Perera K; London R
    Chem Res Toxicol; 1995; 8(1):55-60. PubMed ID: 7703367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that 4-allyl-o-quinones spontaneously rearrange to their more electrophilic quinone methides: potential bioactivation mechanism for the hepatocarcinogen safrole.
    Bolton JL; Acay NM; Vukomanovic V
    Chem Res Toxicol; 1994; 7(3):443-50. PubMed ID: 8075378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous hydrolysis of 4-trifluoromethylphenol to a quinone methide and subsequent protein alkylation.
    Thompson DC; Perera K; London R
    Chem Biol Interact; 2000 Apr; 126(1):1-14. PubMed ID: 10826650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of quinone methide in the in vitro toxicity of the skin tumor promoter butylated hydroxytoluene hydroperoxide.
    Guyton KZ; Thompson JA; Kensler TW
    Chem Res Toxicol; 1993; 6(5):731-8. PubMed ID: 8292753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological and toxicological consequences of quinone methide formation.
    Thompson DC; Thompson JA; Sugumaran M; Moldéus P
    Chem Biol Interact; 1993 Feb; 86(2):129-62. PubMed ID: 8448810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells.
    Bolton JL; Pisha E; Shen L; Krol ES; Iverson SL; Huang Z; van Breemen RB; Pezzuto JM
    Chem Biol Interact; 1997 Sep; 106(2):133-48. PubMed ID: 9366899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual reactivity of hydroxy- and methoxy- substituted o-quinone methides in aqueous solutions: hydration versus tautomerization.
    Arumugam S; Popik VV
    J Org Chem; 2010 Nov; 75(21):7338-46. PubMed ID: 20925363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skin sensitization to eugenol and isoeugenol in mice: possible metabolic pathways involving ortho-quinone and quinone methide intermediates.
    Bertrand F; Basketter DA; Roberts DW; Lepoittevin JP
    Chem Res Toxicol; 1997 Mar; 10(3):335-43. PubMed ID: 9084914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of mitochondrial respiration by a para-quinone methide.
    Thompson DC; Perera K
    Biochem Biophys Res Commun; 1995 Apr; 209(1):6-11. PubMed ID: 7726864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for NQO1 and NQO2 catalyzed reduction of ortho- and para-quinone methides.
    Kucera HR; Livingstone M; Moscoso CG; Gaikwad NW
    Free Radic Res; 2013 Dec; 47(12):1016-26. PubMed ID: 24074361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.