These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 7579041)

  • 1. Characterisation of protein structure/function relationship by sequence analysis without previous alignment: distinction between sub-groups of protein kinases.
    Guerrucci MA; Bellé R
    Biosci Rep; 1995 Jun; 15(3):161-71. PubMed ID: 7579041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and prediction of functional sub-types from protein sequence alignments.
    Hannenhalli SS; Russell RB
    J Mol Biol; 2000 Oct; 303(1):61-76. PubMed ID: 11021970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural evolution of the protein kinase-like superfamily.
    Scheeff ED; Bourne PE
    PLoS Comput Biol; 2005 Oct; 1(5):e49. PubMed ID: 16244704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based chemogenomics: analysis of protein family landscapes.
    Pirard B
    Methods Mol Biol; 2009; 575():281-96. PubMed ID: 19727620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sentra, a database of signal transduction proteins.
    Maltsev N; Marland E; Yu GX; Bhatnagar S; Lusk R
    Nucleic Acids Res; 2002 Jan; 30(1):349-50. PubMed ID: 11752334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Members of a novel family of mammalian protein kinases complement the DNA-negative phenotype of a vaccinia virus ts mutant defective in the B1 kinase.
    Boyle KA; Traktman P
    J Virol; 2004 Feb; 78(4):1992-2005. PubMed ID: 14747564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures.
    Ouzounis C; Sander C; Scharf M; Schneider R
    J Mol Biol; 1993 Aug; 232(3):805-25. PubMed ID: 8355272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes.
    Pandit SB; Gosar D; Abhiman S; Sujatha S; Dixit SS; Mhatre NS; Sowdhamini R; Srinivasan N
    Nucleic Acids Res; 2002 Jan; 30(1):289-93. PubMed ID: 11752317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PALI-a database of Phylogeny and ALIgnment of homologous protein structures.
    Balaji S; Sujatha S; Kumar SS; Srinivasan N
    Nucleic Acids Res; 2001 Jan; 29(1):61-5. PubMed ID: 11125050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between classification of multi-domain proteins using an alignment-free approach and their functions: a case study with immunoglobulins.
    Bhaskara RM; Mehrotra P; Rakshambikai R; Gnanavel M; Martin J; Srinivasan N
    Mol Biosyst; 2014 May; 10(5):1082-93. PubMed ID: 24572770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of novel pleckstrin homology (PH) domains provides a hypothesis for PH domain function.
    Shaw G
    Biochem Biophys Res Commun; 1993 Sep; 195(2):1145-51. PubMed ID: 8373391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores.
    Wilson CA; Kreychman J; Gerstein M
    J Mol Biol; 2000 Mar; 297(1):233-49. PubMed ID: 10704319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase profile of sperm and eggs: cloning and characterization of two novel testis-specific protein kinases (AIE1, AIE2) related to yeast and fly chromosome segregation regulators.
    Tseng TC; Chen SH; Hsu YP; Tang TK
    DNA Cell Biol; 1998 Oct; 17(10):823-33. PubMed ID: 9809744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein structure. Prediction of progress at last.
    Thornton JM; Flores TP; Jones DT; Swindells MB
    Nature; 1991 Nov; 354(6349):105-6. PubMed ID: 1944583
    [No Abstract]   [Full Text] [Related]  

  • 15. On the Origin of SERKs: Bioinformatics Analysis of the Somatic Embryogenesis Receptor Kinases.
    Aan den Toorn M; Albrecht C; de Vries S
    Mol Plant; 2015 May; 8(5):762-82. PubMed ID: 25864910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of subfamily-specific sites based on active sites modeling and clustering.
    de Melo-Minardi RC; Bastard K; Artiguenave F
    Bioinformatics; 2010 Dec; 26(24):3075-82. PubMed ID: 20980272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases.
    Fetrow JS; Skolnick J
    J Mol Biol; 1998 Sep; 281(5):949-68. PubMed ID: 9719646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KinMutBase: a registry of disease-causing mutations in protein kinase domains.
    Ortutay C; Väliaho J; Stenberg K; Vihinen M
    Hum Mutat; 2005 May; 25(5):435-42. PubMed ID: 15832311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary structure, expression, and signal-dependent tyrosine phosphorylation of a Drosophila homolog of extracellular signal-regulated kinase.
    Biggs WH; Zipursky SL
    Proc Natl Acad Sci U S A; 1992 Jul; 89(14):6295-9. PubMed ID: 1378625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional information in SWISS-PROT: the basis for large-scale characterisation of protein sequences.
    Apweiler R
    Brief Bioinform; 2001 Mar; 2(1):9-18. PubMed ID: 11465066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.