These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7579112)

  • 1. Cardiopulmonary bypass for adult patients: a survey of equipment and techniques.
    Silvay G; Ammar T; Reich DL; Vela-Cantos F; Joffe D; Ergin AM
    J Cardiothorac Vasc Anesth; 1995 Aug; 9(4):420-4. PubMed ID: 7579112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of arterial filtration on reduction of gaseous microemboli in the middle cerebral artery during cardiopulmonary bypass.
    Padayachee TS; Parsons S; Theobold R; Gosling RG; Deverall PB
    Ann Thorac Surg; 1988 Jun; 45(6):647-9. PubMed ID: 3288143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of oxygenator characteristics on its capability to remove gaseous microemboli.
    De Somer F
    J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prebypass filtration of cardiopulmonary bypass circuits: an outdated technique?
    Merkle F; Böttcher W; Hetzer R
    Perfusion; 2003 Mar; 18 Suppl 1():81-8. PubMed ID: 12708770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Dioxide Flush of an Integrated Minimized Perfusion Circuit Prior to Priming Prevents Spontaneous Air Release Into the Arterial Line During Clinical Use.
    Stehouwer MC; de Vroege R; Hoohenkerk GJF; Hofman FN; Kelder JC; Buchner B; de Mol BA; Bruins P
    Artif Organs; 2017 Nov; 41(11):997-1003. PubMed ID: 28741663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The capability of trapping gaseous microemboli of two pediatric arterial filters with pulsatile and nonpulsatile flow in a simulated infant CPB model.
    Wang S; Win KN; Kunselman AR; Woitas K; Myers JL; Undar A
    ASAIO J; 2008; 54(5):519-22. PubMed ID: 18812745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Goal-Directed Perfusion Methodology for Determining Oxygenator Performance during Clinical Cardiopulmonary Bypass.
    Stammers AH; Miller R; Francis SG; Fuzesi L; Nostro A; Tesdahl E
    J Extra Corpor Technol; 2017 Jun; 49(2):81-92. PubMed ID: 28638156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Normobaric versus Hypobaric Oxygenation on Gaseous Microemboli Removal in a Diffusion Membrane Oxygenator: An In Vitro Comparison.
    Schuldes M; Riley JB; Francis SG; Clingan S
    J Extra Corpor Technol; 2016 Sep; 48(3):129-136. PubMed ID: 27729706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of a new oxygenator-integrated fat and leukocyte removal device.
    Dell'Amore A; Tripodi A; Cavallucci A; Guerrini F; Ronchi B; Zanoni S; Lamarra M
    Asian Cardiovasc Thorac Ann; 2010 Dec; 18(6):546-50. PubMed ID: 21149403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaseous microemboli: sources, causes, and clinical considerations.
    Kurusz M
    Med Instrum; 1985; 19(2):73-6. PubMed ID: 4000011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracorporeal shunt: a theoretical approach to the prevention of arterial hyperoxia and the reduction of gaseous emboli during cardiopulmonary bypass.
    Weightman WM; Gibbs NM
    Anesth Analg; 1996 Mar; 82(3):672-3. PubMed ID: 8623987
    [No Abstract]   [Full Text] [Related]  

  • 12. Evaluation of Quadrox-i and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated cardiopulmonary bypass.
    Lin J; Dogal NM; Mathis RK; Qiu F; Kunselman A; Ündar A
    Perfusion; 2012 May; 27(3):235-43. PubMed ID: 22337759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of arterial filters in the prevention of systemic embolization by microbubbles released by oxygenators.
    Abbruzzese PA; Meloni L; Cardu G; Martelli V; Cherchi A
    Am J Cardiol; 1991 Apr; 67(9):911-2. PubMed ID: 2012000
    [No Abstract]   [Full Text] [Related]  

  • 14. In vitro elimination of gaseous microemboli utilizing hypobaric oxygenation in the Terumo® FX15 oxygenator.
    Clingan S; Schuldes M; Francis S; Hoerr H; Riley J
    Perfusion; 2016 Oct; 31(7):552-9. PubMed ID: 26993481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-Vitro Evaluation of Two Types of Neonatal Oxygenators in Handling Gaseous Microemboli and Maintaining Optimal Hemodynamic Stability During Cardiopulmonary Bypass.
    Marupudi N; Wang S; Canêo LF; Jatene FB; Kunselman AR; Undar A
    Braz J Cardiovasc Surg; 2016; 31(5):343-350. PubMed ID: 27982342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pediatric cardiopulmonary bypass: a review of current practice.
    Groom RC; Akl BF; Albus R; Lefrak EA
    Int Anesthesiol Clin; 1996; 34(2):141-63. PubMed ID: 8799751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of gaseous microemboli counts in arterial, simultaneous and venous heat exchange with a hollow fiber membrane oxygenator.
    Sutton RG; Riley JB; Merrill JH
    J Extra Corpor Technol; 1994; 26(2):56-60. PubMed ID: 10147369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a leucocyte depleting arterial line filter on perioperative proteolytic enzyme and oxygen free radical release in patients undergoing aortocoronary bypass surgery.
    Mair P; Hoermann C; Mair J; Margreiter J; Puschendorf B; Balogh D
    Acta Anaesthesiol Scand; 1999 Apr; 43(4):452-7. PubMed ID: 10225080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the Maquet Neonatal and Pediatric Quadrox I with an integrated arterial line filter during cardiopulmonary bypass.
    Melchior RW; Schiavo K; Frey T; Rogers D; Patel J; Chelnik K; Rosenthal T
    Perfusion; 2012 Sep; 27(5):399-406. PubMed ID: 22717608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients.
    Qiu F; Guan Y; Su X; Kunselman A; Undar A
    Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.