These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7579138)

  • 21. [Convergence of corticofugal impulse projections onto superior colliculus neurons].
    Silakov VL
    Fiziol Zh SSSR Im I M Sechenova; 1979 Sep; 65(9):1249-56. PubMed ID: 488451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Projections from visual areas of the cerebral cortex to pretectal nuclear complex, terminal accessory optic nuclei, and superior colliculus in macaque monkey.
    Lui F; Gregory KM; Blanks RH; Giolli RA
    J Comp Neurol; 1995 Dec; 363(3):439-60. PubMed ID: 8847410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional impact of primary visual cortex deactivation on subcortical target structures in the thalamus and midbrain.
    Rushmore RJ; Payne BR; Lomber SG
    J Comp Neurol; 2005 Aug; 488(4):414-26. PubMed ID: 15973682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Microsystemic organization of neuronal interactions in the central units of the visual analyzer].
    Silakov VL
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1978; 28(4):807-14. PubMed ID: 695943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GABAergic pathways in the rat subcortical visual system: a comparative study in vivo and in vitro.
    Born G; Schmidt M
    Eur J Neurosci; 2007 Sep; 26(5):1183-92. PubMed ID: 17767497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topographical projection from the superior colliculus to the nucleus of the brachium of the inferior colliculus in the ferret: convergence of visual and auditory information.
    Doubell TP; Baron J; Skaliora I; King AJ
    Eur J Neurosci; 2000 Dec; 12(12):4290-308. PubMed ID: 11122340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus.
    Sparks DL
    Physiol Rev; 1986 Jan; 66(1):118-71. PubMed ID: 3511480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro reconstruction and functional development of the superior colliculus in the retinotectal pathway.
    Hirota S; Moriguchi H; Saito A; Inoue K; Murakami A; Kotani K; Jimbo Y
    Neurosci Lett; 2013 Jun; 545():96-101. PubMed ID: 23632137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of connections to and from the visual cortex in the wallaby (Macropus eugenii).
    Sheng XM; Marotte LR; Mark RF
    J Comp Neurol; 1990 Oct; 300(2):196-210. PubMed ID: 2258462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Long term transformation of neuronal activity in the superior colliculus isolated from corticofugal influences].
    Silakov VL
    Fiziol Zh SSSR Im I M Sechenova; 1977 Sep; 63(9):1243-50. PubMed ID: 913677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alignment of multimodal sensory input in the superior colliculus through a gradient-matching mechanism.
    Triplett JW; Phan A; Yamada J; Feldheim DA
    J Neurosci; 2012 Apr; 32(15):5264-71. PubMed ID: 22496572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orienting behavior by rats with visual cortical and subcortical lesions.
    Midgley GC; Tees RC
    Exp Brain Res; 1981; 41(3-4):316-28. PubMed ID: 7215493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recruitment of local excitatory circuits in the superior colliculus following deafferentation and the regeneration of retinocollicular inputs.
    Turner JP; Sauvé Y; Varela-Rodriguez C; Lund RD; Salt TE
    Eur J Neurosci; 2005 Oct; 22(7):1643-54. PubMed ID: 16197505
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of target-specific neuronal projections in organotypic slice cultures from rat visual cortex.
    Bolz J; Novak N; Götz M; Bonhoeffer T
    Nature; 1990 Jul; 346(6282):359-62. PubMed ID: 1695716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correlation analysis of corticotectal interactions in the cat visual system.
    Brecht M; Singer W; Engel AK
    J Neurophysiol; 1998 May; 79(5):2394-407. PubMed ID: 9582215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visual wulst-optic tectum relationships in birds: a comparison with the mammalian corticotectal system.
    Bagnoli P; Francesconi W; Magni F
    Arch Ital Biol; 1982 May; 120(1-3):212-35. PubMed ID: 7138181
    [No Abstract]   [Full Text] [Related]  

  • 37. Target-independent ephrina/EphA-mediated axon-axon repulsion as a novel element in retinocollicular mapping.
    Suetterlin P; Drescher U
    Neuron; 2014 Nov; 84(4):740-52. PubMed ID: 25451192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The impact of a corticotectal impulse on the awake superior colliculus.
    Bereshpolova Y; Stoelzel CR; Gusev AG; Bezdudnaya T; Swadlow HA
    J Neurosci; 2006 Feb; 26(8):2250-9. PubMed ID: 16495452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transitory corpus callosum axons projecting throughout developing rat visual cortex revealed by Dil.
    Elberger AJ
    Cereb Cortex; 1994; 4(3):279-99. PubMed ID: 8075533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two visual corticotectal systems in cat.
    Ogasawara K; McHaffie JG; Stein BE
    J Neurophysiol; 1984 Dec; 52(6):1226-45. PubMed ID: 6520633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.