These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 7579601)
1. Update on physical state of bile. Carey MC; Cohen DE Ital J Gastroenterol; 1995 Mar; 27(2):92-100. PubMed ID: 7579601 [TBL] [Abstract][Full Text] [Related]
2. Cholesterol carriers in human bile: are "lamellae" involved? Cohen DE; Kaler EW; Carey MC Hepatology; 1993 Dec; 18(6):1522-31. PubMed ID: 8244279 [TBL] [Abstract][Full Text] [Related]
3. Imaging supramolecular aggregates in bile models and human bile. Kaplun A; Konikoff FM; Eitan A; Rubin M; Vilan A; Lichtenberg D; Gilat T; Talmon Y Microsc Res Tech; 1997 Oct; 39(1):85-96. PubMed ID: 9329021 [TBL] [Abstract][Full Text] [Related]
4. Microstructural evolution of lipid aggregates in nucleating model and human biles visualized by cryogenic transmission electron microscopy. Konikoff FM; Danino D; Weihs D; Rubin M; Talmon Y Hepatology; 2000 Feb; 31(2):261-8. PubMed ID: 10655245 [TBL] [Abstract][Full Text] [Related]
5. Separation and quantitation of cholesterol "carriers" in bile. Donovan JM; Carey MC Hepatology; 1990 Sep; 12(3 Pt 2):94S-104S; discussion 104S-105S. PubMed ID: 2210665 [TBL] [Abstract][Full Text] [Related]
6. Bile salt hydrophobicity controls vesicle secretion rates and transformations in native bile. Cohen DE; Leighton LS; Carey MC Am J Physiol; 1992 Sep; 263(3 Pt 1):G386-95. PubMed ID: 1415551 [TBL] [Abstract][Full Text] [Related]
7. Lamellar bodies coexist with vesicles and micelles in human gallbladder bile. Ursodeoxycholic acid prevents cholesterol crystal nucleation by increasing biliary lamellae. Ginanni Corradini S; Arancia G; Calcabrini A; Della Guardia P; Baiocchi L; Nistri A; Giacomelli L; Angelico M J Hepatol; 1995 Jun; 22(6):642-57. PubMed ID: 7560858 [TBL] [Abstract][Full Text] [Related]
8. Accurate separation of biliary lipid aggregates requires the correct intermixed micellar/intervesicular bile salt concentration. Donovan JM; Jackson AA Hepatology; 1998 Mar; 27(3):641-8. PubMed ID: 9500688 [TBL] [Abstract][Full Text] [Related]
9. Physical chemistry of biliary lipids during bile formation. Cohen DE; Carey MC Hepatology; 1990 Sep; 12(3 Pt 2):143S-147S; discussion 147S-148S. PubMed ID: 2210642 [TBL] [Abstract][Full Text] [Related]
10. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation. Cohen DE; Angelico M; Carey MC J Lipid Res; 1990 Jan; 31(1):55-70. PubMed ID: 2313205 [TBL] [Abstract][Full Text] [Related]
11. Cryoelectron microscopy of a nucleating model bile in vitreous ice: formation of primordial vesicles. Gantz DL; Wang DQ; Carey MC; Small DM Biophys J; 1999 Mar; 76(3):1436-51. PubMed ID: 10049325 [TBL] [Abstract][Full Text] [Related]
12. Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: identical pathways to corresponding model biles with three predominating sequences. Wang DQ; Carey MC J Lipid Res; 1996 Dec; 37(12):2539-49. PubMed ID: 9017506 [TBL] [Abstract][Full Text] [Related]
14. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile. Cohen DE; Thurston GM; Chamberlin RA; Benedek GB; Carey MC Biochemistry; 1998 Oct; 37(42):14798-814. PubMed ID: 9778354 [TBL] [Abstract][Full Text] [Related]
15. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts. Narain PK; DeMaria EJ; Heuman DM J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899 [TBL] [Abstract][Full Text] [Related]
16. Acyl chain unsaturation modulates distribution of lecithin molecular species between mixed micelles and vesicles in model bile. Implications for particle structure and metastable cholesterol solubilities. Cohen DE; Carey MC J Lipid Res; 1991 Aug; 32(8):1291-302. PubMed ID: 1770311 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of microstructural development in paired human hepatic and gallbladder biles. Weihs D; Schmidt J; Danino D; Goldiner I; Leikin-Gobbi D; Eitan A; Rubin M; Talmon Y; Konikoff FM Biochim Biophys Acta; 2007 Oct; 1771(10):1289-98. PubMed ID: 17913578 [TBL] [Abstract][Full Text] [Related]
18. Cholesterol saturation rather than phospholipid/bile salt ratio or protein content affects crystallization sequences in human gallbladder bile. Venneman NG; Portincasa P; Vanberge-Henegouwen GP; van Erpecum KJ Eur J Clin Invest; 2004 Oct; 34(10):656-63. PubMed ID: 15473890 [TBL] [Abstract][Full Text] [Related]
19. Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions. Mazer NA; Carey MC Biochemistry; 1983 Jan; 22(2):426-42. PubMed ID: 6824637 [TBL] [Abstract][Full Text] [Related]
20. Differential patterns of lipid-protein association in fast and slow cholesterol nucleating human gallbladder biles: implications for cholesterol nucleation from biliary lipid carriers. Ginanni Corradini S; Alvaro D; Giacomelli L; Cedola M; Angelico M Biochim Biophys Acta; 1991 Oct; 1086(1):125-33. PubMed ID: 1954239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]