BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 7579713)

  • 1. Polarity orientation and assembly process of microtubule bundles in nocodazole-treated, MAP2c-transfected COS cells.
    Takemura R; Okabe S; Umeyama T; Hirokawa N
    Mol Biol Cell; 1995 Aug; 6(8):981-96. PubMed ID: 7579713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau.
    Takemura R; Okabe S; Umeyama T; Kanai Y; Cowan NJ; Hirokawa N
    J Cell Sci; 1992 Dec; 103 ( Pt 4)():953-64. PubMed ID: 1487506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of microtubules bundled by microtubule associated protein 2C (MAP2C).
    Umeyama T; Okabe S; Kanai Y; Hirokawa N
    J Cell Biol; 1993 Jan; 120(2):451-65. PubMed ID: 8421058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin depolymerisation induces process formation on MAP2-transfected non-neuronal cells.
    Edson K; Weisshaar B; Matus A
    Development; 1993 Feb; 117(2):689-700. PubMed ID: 8392463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microtubule-based, dynein-dependent force induces local cell protrusions: Implications for neurite initiation.
    Dehmelt L; Nalbant P; Steffen W; Halpain S
    Brain Cell Biol; 2006 Feb; 35(1):39-56. PubMed ID: 17940912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAP2d promotes bundling and stabilization of both microtubules and microfilaments.
    Ferhat L; Represa A; Bernard A; Ben-Ari Y; Khrestchatisky M
    J Cell Sci; 1996 May; 109 ( Pt 5)():1095-103. PubMed ID: 8743956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GSK3beta-mediated phosphorylation of the microtubule-associated protein 2C (MAP2C) prevents microtubule bundling.
    Sánchez C; Pérez M; Avila J
    Eur J Cell Biol; 2000 Apr; 79(4):252-60. PubMed ID: 10826493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bundling of microtubules in transfected cells does not involve an autonomous dimerization site on the MAP2 molecule.
    Burgin KE; Ludin B; Ferralli J; Matus A
    Mol Biol Cell; 1994 May; 5(5):511-7. PubMed ID: 7919534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule-associated protein 2 and the organization of cellular microtubules.
    Weisshaar B; Matus A
    J Neurocytol; 1993 Sep; 22(9):727-34. PubMed ID: 8270957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reorganisation of the microtubular cytoskeleton by embryonic microtubule-associated protein 2 (MAP2c).
    Weisshaar B; Doll T; Matus A
    Development; 1992 Dec; 116(4):1151-61. PubMed ID: 1338311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons.
    Chen J; Kanai Y; Cowan NJ; Hirokawa N
    Nature; 1992 Dec; 360(6405):674-7. PubMed ID: 1465130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a new microtubule-interacting protein Mip-90.
    González M; Cambiazo V; Maccioni RB
    Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tau and microtubule-associated protein 2c transfection and neurite outgrowth in ND 7/23 cells.
    Langkopf A; Guilleminot J; Nunez J
    J Neurochem; 1995 Mar; 64(3):1045-53. PubMed ID: 7861133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule assembly in cultured myoblasts and myotubes following nocodazole induced microtubule depolymerisation.
    Musa H; Orton C; Morrison EE; Peckham M
    J Muscle Res Cell Motil; 2003; 24(4-6):301-8. PubMed ID: 14620743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of chromosomes and microtubules visualized by multiple-wavelength fluorescence imaging in living mammalian cells: effects of mitotic inhibitors on cell cycle progression.
    Haraguchi T; Kaneda T; Hiraoka Y
    Genes Cells; 1997 Jun; 2(6):369-80. PubMed ID: 9286855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The projection domain of MAP2b regulates microtubule protrusion and process formation in Sf9 cells.
    Bélanger D; Farah CA; Nguyen MD; Lauzon M; Cornibert S; Leclerc N
    J Cell Sci; 2002 Apr; 115(Pt 7):1523-39. PubMed ID: 11896199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of a minus-end-directed motor protein induces Sf9 cells to form axon-like processes with uniform microtubule polarity orientation.
    Sharp DJ; Kuriyama R; Essner R; Baas PW
    J Cell Sci; 1997 Oct; 110 ( Pt 19)():2373-80. PubMed ID: 9410876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules.
    Bré MH; Kreis TE; Karsenti E
    J Cell Biol; 1987 Sep; 105(3):1283-96. PubMed ID: 2888771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein 4.1R regulates interphase microtubule organization at the centrosome.
    Pérez-Ferreiro CM; Vernos I; Correas I
    J Cell Sci; 2004 Dec; 117(Pt 25):6197-206. PubMed ID: 15564380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tau confers drug stability but not cold stability to microtubules in living cells.
    Baas PW; Pienkowski TP; Cimbalnik KA; Toyama K; Bakalis S; Ahmad FJ; Kosik KS
    J Cell Sci; 1994 Jan; 107 ( Pt 1)():135-43. PubMed ID: 8175903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.