BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 7579834)

  • 1. Myocardial self-preservation: absence of heat shock factor activation and heat shock proteins 70 mRNA accumulation in the human heart during cardiac surgery.
    McGrath LB; Locke M
    J Card Surg; 1995 Jul; 10(4 Suppl):400-6. PubMed ID: 7579834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reperfusion causes significant activation of heat shock transcription factor 1 in ischemic rat heart.
    Nishizawa J; Nakai A; Higashi T; Tanabe M; Nomoto S; Matsuda K; Ban T; Nagata K
    Circulation; 1996 Nov; 94(9):2185-92. PubMed ID: 8901670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of heat-shock transcription factor in rat heart after heat shock and exercise.
    Locke M; Noble EG; Tanguay RM; Feild MR; Ianuzzo SE; Ianuzzo CD
    Am J Physiol; 1995 Jun; 268(6 Pt 1):C1387-94. PubMed ID: 7611357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable overexpression of human HSF-1 in murine cells suggests activation rather than expression of HSF-1 to be the key regulatory step in the heat shock gene expression.
    Mivechi NF; Shi XY; Hahn GM
    J Cell Biochem; 1995 Oct; 59(2):266-80. PubMed ID: 8904320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes.
    Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N
    Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of heat shock factor and heat shock protein 70 genes during maize pollen development.
    Gagliardi D; Breton C; Chaboud A; Vergne P; Dumas C
    Plant Mol Biol; 1995 Nov; 29(4):841-56. PubMed ID: 8541509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat-shock factor-1, steroid hormones, and regulation of heat-shock protein expression in the heart.
    Knowlton AA; Sun L
    Am J Physiol Heart Circ Physiol; 2001 Jan; 280(1):H455-64. PubMed ID: 11123263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids.
    Hosokawa N; Hirayoshi K; Kudo H; Takechi H; Aoike A; Kawai K; Nagata K
    Mol Cell Biol; 1992 Aug; 12(8):3490-8. PubMed ID: 1321338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive expression of HSP 72 in swine heart.
    Locke M; Tanguay RM; Ianuzzo CD
    J Mol Cell Cardiol; 1996 Mar; 28(3):467-74. PubMed ID: 9011630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute pancreatitis results in induction of heat shock proteins 70 and 27 and heat shock factor-1.
    Ethridge RT; Ehlers RA; Hellmich MR; Rajaraman S; Evers BM
    Pancreas; 2000 Oct; 21(3):248-56. PubMed ID: 11039468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis.
    Lee JH; Hübel A; Schöffl F
    Plant J; 1995 Oct; 8(4):603-12. PubMed ID: 7496404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of spontaneous and heat-induced HSP 70 expression in developing zebrafish (Danio rerio).
    Yeh FL; Hsu T
    J Exp Zool; 2002 Sep; 293(4):349-59. PubMed ID: 12210118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological induction of heat shock protein 68 synthesis in cultured rat astrocytes.
    Nishimura RN; Dwyer BE
    J Biol Chem; 1995 Dec; 270(50):29967-70. PubMed ID: 8530397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana.
    Lee JH; Schöffl F
    Mol Gen Genet; 1996 Aug; 252(1-2):11-9. PubMed ID: 8804399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased HSF activation in muscles with a high constitutive Hsp70 expression.
    Locke M; Tanguay RM
    Cell Stress Chaperones; 1996 Sep; 1(3):189-96. PubMed ID: 9222604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock protein accumulation and heat shock transcription factor activation in rat skeletal muscle during compensatory hypertrophy.
    Locke M
    Acta Physiol (Oxf); 2008 Mar; 192(3):403-11. PubMed ID: 17973955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of activator protein-1 and heat shock factor-1 in myocardial ischemia and reperfusion injury: role of poly(ADP-ribose) polymerase-1.
    Zingarelli B; Hake PW; O'Connor M; Denenberg A; Wong HR; Kong S; Aronow BJ
    Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1408-15. PubMed ID: 14670820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative injury rapidly activates the heat shock transcription factor but fails to increase levels of heat shock proteins.
    Bruce JL; Price BD; Coleman CN; Calderwood SK
    Cancer Res; 1993 Jan; 53(1):12-5. PubMed ID: 8416735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of quercetin-induced suppression and delay of heat shock gene expression and thermotolerance development in HT-29 cells.
    Lee YJ; Erdos G; Hou ZZ; Kim SH; Kim JH; Cho JM; Corry PM
    Mol Cell Biochem; 1994 Aug; 137(2):141-54. PubMed ID: 7845388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examination of the DNA sequence-specific binding properties of heat shock transcription factor in Xenopus laevis embryos.
    Karn H; Ovsenek N; Heikkila JJ
    Biochem Cell Biol; 1992; 70(10-11):1006-13. PubMed ID: 1297327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.