These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7579903)

  • 1. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model validation and dynamic behavior.
    Sorribas A; Curto R; Cascante M
    Math Biosci; 1995 Nov; 130(1):71-84. PubMed ID: 7579903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: steady-state analysis.
    Cascante M; Curto R; Sorribas A
    Math Biosci; 1995 Nov; 130(1):51-69. PubMed ID: 7579902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model definition and nomenclature.
    Curto R; Sorribas A; Cascante M
    Math Biosci; 1995 Nov; 130(1):25-50. PubMed ID: 7579901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae.
    Hjersted JL; Henson MA
    IET Syst Biol; 2009 May; 3(3):167-79. PubMed ID: 19449977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of metabolic system parameters using global optimization methods.
    Polisetty PK; Voit EO; Gatzke EP
    Theor Biol Med Model; 2006 Jan; 3():4. PubMed ID: 16441881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling.
    Chen Y; Wu Y; Zhu B; Zhang G; Wei N
    PLoS One; 2018; 13(6):e0199104. PubMed ID: 29940003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple generic model for dynamic experiments with Saccharomyces cerevisiae in continuous culture: decoupling between anabolism and catabolism.
    Duboc P; von Stockar U; Villadsen J
    Biotechnol Bioeng; 1998 Oct; 60(2):180-9. PubMed ID: 10099419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models.
    Hjersted JL; Henson MA
    Biotechnol Prog; 2006; 22(5):1239-48. PubMed ID: 17022660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and prediction of the effect of uncertain boundary values in modeling a metabolic pathway.
    de Atauri P; Sorribas A; Cascante M
    Biotechnol Bioeng; 2000 Apr; 68(1):18-30. PubMed ID: 10699868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of variant theories of intact biochemical systems. II. Flux-oriented and metabolic control theories.
    Sorribas A; Savageau MA
    Math Biosci; 1989 Jun; 94(2):195-238. PubMed ID: 2520169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic flux balancing elucidates NAD(P)H production as limiting response to furfural inhibition in Saccharomyces cerevisiae.
    Pornkamol U; Franzen CJ
    Biotechnol J; 2015 Aug; 10(8):1248-58. PubMed ID: 25880365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllability of non-linear biochemical systems.
    Ervadi-Radhakrishnan A; Voit EO
    Math Biosci; 2005 Jul; 196(1):99-123. PubMed ID: 15982674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways.
    Sorribas A; Savageau MA
    Math Biosci; 1989 Jun; 94(2):239-69. PubMed ID: 2520170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures.
    Hanly TJ; Urello M; Henson MA
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2529-41. PubMed ID: 22005741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state and transient-state analyses of aerobic fermentation in Saccharomyces kluyveri.
    Møller K; Bro C; Piskur J; Nielsen J; Olsson L
    FEMS Yeast Res; 2002 May; 2(2):233-44. PubMed ID: 12702311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic evaluation of the formation of tryptophan derivatives in the kynurenine pathway during wort fermentation using Saccharomyces pastorianus and Saccharomyces cerevisiae.
    Yılmaz C; Gökmen V
    Food Chem; 2019 Nov; 297():124975. PubMed ID: 31253324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biochemically structured model for Saccharomyces cerevisiae.
    Lei F; Rotbøll M; Jørgensen SB
    J Biotechnol; 2001 Jul; 88(3):205-21. PubMed ID: 11434967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is maximization of molar yield in metabolic networks favoured by evolution?
    Schuster S; Pfeiffer T; Fell DA
    J Theor Biol; 2008 Jun; 252(3):497-504. PubMed ID: 18249414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. I. Unbranched pathways.
    Cascante M; Franco R; Canela EI
    Math Biosci; 1989 Jun; 94(2):271-88. PubMed ID: 2520171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.