These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 758021)

  • 41. Audiogenic seizures in rats: relation to noradrenergic neurons of the locus coeruleus.
    Jerlicz M; Kostowski W; Bidziński A; Hauptman M; Dymecki J
    Acta Physiol Pol; 1978; 29(5):409-12. PubMed ID: 747102
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Effect of a decrease in brain noradrenaline and serotonin levels on defensive and food-getting conditioned reflexes in rats].
    Staĭkova RM; Orlova NV; Getsova VM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1979; 29(5):962-9. PubMed ID: 158907
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pupillometry as a glimpse into the neurochemical basis of human memory encoding.
    Hoffing RC; Seitz AR
    J Cogn Neurosci; 2015 Apr; 27(4):765-74. PubMed ID: 25390194
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatial and non-spatial learning in the rat following lesions to the nucleus locus coeruleus.
    Compton DM; Dietrich KL; Smith JS; Davis BK
    Neuroreport; 1995 Dec; 7(1):177-82. PubMed ID: 8742446
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of chronic clonidine treatment and lesion of the locus coeruleus on the conditioned avoidance behavior in rats.
    Kostowski W; Plaźnik A; Pucilowski O
    Pol J Pharmacol Pharm; 1980; 32(3):305-12. PubMed ID: 7279791
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dissociated paradoxical sleep deprivation effects on inhibitory avoidance and conditioned fear.
    Bueno OF; Lobo LL; Oliveira MG; Gugliano EB; Pomarico AC; Tufik S
    Physiol Behav; 1994 Oct; 56(4):775-9. PubMed ID: 7800747
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes in the noradrenergic innervation of the area dentata after axotomy of coeruleohippocampal projections or unilateral lesion of the locus coeruleus.
    Haring JH; Miller GD; Davis JN
    Brain Res; 1986 Mar; 368(2):233-8. PubMed ID: 3697723
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo noradrenaline release evoked in the anteroventral thalamic nucleus by locus coeruleus activation: an electrochemical study.
    Brun P; Suaud-Chagny MF; Gonon F; Buda M
    Neuroscience; 1993 Feb; 52(4):961-72. PubMed ID: 8095714
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity.
    Foote SL; Bloom FE; Aston-Jones G
    Physiol Rev; 1983 Jul; 63(3):844-914. PubMed ID: 6308694
    [No Abstract]   [Full Text] [Related]  

  • 50. Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat.
    McLean JH; Shipley MT; Nickell WT; Aston-Jones G; Reyher CK
    J Comp Neurol; 1989 Jul; 285(3):339-49. PubMed ID: 2547851
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The possible role of locus coeruleus noradrenergic activity in anxiety-panic.
    Redmond DE
    Clin Neuropharmacol; 1986; 9 Suppl 4():40-2. PubMed ID: 3032432
    [No Abstract]   [Full Text] [Related]  

  • 52. Priming stimulation of locus coeruleus facilitates memory retrieval in the rat.
    Sara SJ; Devauges V
    Brain Res; 1988 Jan; 438(1-2):299-303. PubMed ID: 3345434
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impaired acquisition of a passive avoidance response after lesions induced in the locus coeruleus by 6-OH-dopamine.
    Crow TJ; Wendlandt S
    Nature; 1976 Jan 1-8; 259(5538):42-4. PubMed ID: 175278
    [No Abstract]   [Full Text] [Related]  

  • 54. Effect of oxytocin and vasopressin on memory consolidation: sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures.
    Kovács GL; Bohus B; Versteeg DH; de Kloet ER; de Wied D
    Brain Res; 1979 Oct; 175(2):303-14. PubMed ID: 487159
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glucose effects on firing rate of neurons of the locus coeruleus: another attempt to put memory back in the brain.
    Sara SJ
    Neurobiol Aging; 1988; 9(5-6):730-2. PubMed ID: 3211269
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reduced analgesic effects of morphine after bilateral lesions of the locus coeruleus in rats.
    Kostowski W; Jerlicz M; Bidziński A; Hauptmann M
    Pol J Pharmacol Pharm; 1978; 30(1):49-53. PubMed ID: 643740
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effects of peripheral D-amphetamine, 4-OH amphetamine, and epinephrine on maintained discharge in the locus coeruleus with reference to the modulation of learning and memory by these substances.
    Holdefer RN; Jensen RA
    Brain Res; 1987 Aug; 417(1):108-17. PubMed ID: 3620971
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Post-training infusion of glutamate into the bed nucleus of the stria terminalis enhanced inhibitory avoidance memory: an effect involving norepinephrine.
    Liu TL; Chen DY; Liang KC
    Neurobiol Learn Mem; 2009 May; 91(4):456-65. PubMed ID: 19186212
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Injection of corticotropin-releasing hormone into the locus coeruleus or foot shock increases neuronal Fos expression.
    Rassnick S; Hoffman GE; Rabin BS; Sved AF
    Neuroscience; 1998 Jul; 85(1):259-68. PubMed ID: 9607717
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of locus coeruleus in foot shock-evoked Fos expression in rat brain.
    Passerin AM; Cano G; Rabin BS; Delano BA; Napier JL; Sved AF
    Neuroscience; 2000; 101(4):1071-82. PubMed ID: 11113356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.