These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 7580810)

  • 1. Effects of Mg2+ on the stimulation-induced changes in transmitter release at the frog neuromuscular junction.
    Tanabe N; Morota A; Kijima H
    Zoolog Sci; 1995 Jun; 12(3):265-70. PubMed ID: 7580810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction.
    Zengel JE; Magleby KL
    J Gen Physiol; 1981 May; 77(5):503-29. PubMed ID: 6262429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca(2+)-dependent and -independent components of transmitter release at the frog neuromuscular junction.
    Tanabe N; Kijima H
    J Physiol; 1992 Sep; 455():271-89. PubMed ID: 1484356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of spontaneous release at frog junctions on synaptic strength, external calcium and terminal length.
    Grinnell AD; Pawson PA
    J Physiol; 1989 Nov; 418():397-410. PubMed ID: 2576068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of Ba2+, Sr2+, and Ca2+ on stimulation-induced changes in transmitter release at the frog neuromuscular junction.
    Zengel JE; Magleby KL
    J Gen Physiol; 1980 Aug; 76(2):175-211. PubMed ID: 6967950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facilitation, augmentation and potentiation of transmitter release at frog neuromuscular junctions poisoned with botulinum toxin.
    Lupa MT; Tabti N
    Pflugers Arch; 1986 Jun; 406(6):636-40. PubMed ID: 2872654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of calcium channel blockers on stimulation-induced changes in transmitter release at the frog neuromuscular junction.
    Zengel JE; Lee DT; Sosa MA; Mosier DR
    Synapse; 1993 Dec; 15(4):251-62. PubMed ID: 7908759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The thiol-oxidizing agent diamide increases transmitter release by decreasing calcium requirements for neuromuscular transmission in the frog.
    Carlen PL; Kosower EM; Werman R
    Brain Res; 1976 Nov; 117(2):257-76. PubMed ID: 186154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic effects of a trinitrobenzene analogue at the frog neuromuscular junction.
    Osanai M; Tsuji A; Suzuki N; Kijima H
    J Neurophysiol; 1996 Sep; 76(3):1735-43. PubMed ID: 8890288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-independent increase of transmitter release at frog end-plate by trinitrobenzene sulphonic acid.
    Kijima H; Tanabe N
    J Physiol; 1988 Sep; 403():135-49. PubMed ID: 3150982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Type-3 ryanodine receptor involved in Ca2+-induced Ca2+ release and transmitter exocytosis at frog motor nerve terminals.
    Kubota M; Narita K; Murayama T; Suzuki S; Soga S; Usukura J; Ogawa Y; Kuba K
    Cell Calcium; 2005 Dec; 38(6):557-67. PubMed ID: 16157373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-uniform responses to Ca2+ along the frog neuromuscular junction: effects on the probability of spontaneous and evoked transmitter release.
    Robitaille R; Tremblay JP
    Neuroscience; 1991; 40(2):571-85. PubMed ID: 1674115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of lead on neuromuscular transmission in the frog.
    Manalis RS; Cooper GP; Pomeroy SL
    Brain Res; 1984 Feb; 294(1):95-109. PubMed ID: 6320979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in MEPP frequency during depression of evoked release at the frog neuromuscular junction.
    Zengel JE; Sosa MA
    J Physiol; 1994 Jun; 477(Pt 2):267-77. PubMed ID: 7932218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of intracellular Ca2+ in stimulation-induced increases in transmitter release at the frog neuromuscular junction.
    Zengel JE; Sosa MA; Poage RE; Mosier DR
    J Gen Physiol; 1994 Aug; 104(2):337-55. PubMed ID: 7807052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic basis of tetanic and post-tetanic potentiation at a mammalian neuromuscular junction.
    Nussinovitch I; Rahamimoff R
    J Physiol; 1988 Feb; 396():435-55. PubMed ID: 2457692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification by lithium of transmitter release at the neuromuscular junction of the frog.
    Branisteanu DD; Volle RL
    J Pharmacol Exp Ther; 1975 Aug; 194(2):362-72. PubMed ID: 239225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Tetanic potentiation of miniature end-plate potential frequency at frog neuromuscular junction in manganese solutions].
    Narita K
    Nihon Seirigaku Zasshi; 1985; 47(12):746-55. PubMed ID: 3007749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantitative description of stimulation-induced changes in transmitter release at the frog neuromuscular junction.
    Magleby KL; Zengel JE
    J Gen Physiol; 1982 Oct; 80(4):613-38. PubMed ID: 6128373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time course and magnitude of effects of changes in tonicity on acetylcholine release at frog neuromuscular junction.
    Kita H; van der Kloot W
    J Neurophysiol; 1977 Mar; 40(2):212-24. PubMed ID: 300428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.