BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7582169)

  • 1. Gene transfer from a bacterium injected into an aquifer to an indigenous bacterium.
    Zhou JZ; Tiedje JM
    Mol Ecol; 1995 Oct; 4(5):613-8. PubMed ID: 7582169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of molecular techniques to evaluate the survival of a microorganism injected into an aquifer.
    Thiem SM; Krumme ML; Smith RL; Tiedje JM
    Appl Environ Microbiol; 1994 Apr; 60(4):1059-67. PubMed ID: 7912498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide sequence and expression of clcD, a plasmid-borne dienelactone hydrolase gene from Pseudomonas sp. strain B13.
    Frantz B; Ngai KL; Chatterjee DK; Ornston LN; Chakrabarty AM
    J Bacteriol; 1987 Feb; 169(2):704-9. PubMed ID: 3804974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate.
    Ogawa N; Miyashita K
    Appl Environ Microbiol; 1999 Feb; 65(2):724-31. PubMed ID: 9925607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida F1 and to indigenous bacteria in laboratory-scale activated-sludge microcosms.
    Ravatn R; Zehnder AJ; van der Meer JR
    Appl Environ Microbiol; 1998 Jun; 64(6):2126-32. PubMed ID: 9603824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RP4::Mu3A-mediated in vivo cloning and transfer of a chlorobiphenyl catabolic pathway.
    Springael D; van Thor J; Goorissen H; Ryngaert A; De Baere R; Van Hauwe P; Commandeur LC; Parsons JR; De Wachter R; Mergeay M
    Microbiology (Reading); 1996 Nov; 142 ( Pt 11)():3283-93. PubMed ID: 8969525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and expression of the 3-chlorobenzoate-degrading genes from Pseudomonas sp. strain B13.
    Weisshaar MP; Franklin FC; Reineke W
    J Bacteriol; 1987 Jan; 169(1):394-402. PubMed ID: 3025183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that operons tcb, tfd, and clc encode maleylacetate reductase, the fourth enzyme of the modified ortho pathway.
    Kasberg T; Daubaras DL; Chakrabarty AM; Kinzelt D; Reineke W
    J Bacteriol; 1995 Jul; 177(13):3885-9. PubMed ID: 7601858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of 4-chlorobenzoic acid by Pseudomonas aeruginosa PA01 NC.
    Hoskeri RS; Mulla SI; Shouche YS; Ninnekar HZ
    Biodegradation; 2011 Jun; 22(3):509-16. PubMed ID: 20924649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification of putative chlorocatechol dioxygenase gene fragments from alpha- and beta-Proteobacteria.
    Leander M; Vallaeys T; Fulthorpe R
    Can J Microbiol; 1998 May; 44(5):482-6. PubMed ID: 9699302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds.
    Miyazaki R; Bertelli C; Benaglio P; Canton J; De Coi N; Gharib WH; Gjoksi B; Goesmann A; Greub G; Harshman K; Linke B; Mikulic J; Mueller L; Nicolas D; Robinson-Rechavi M; Rivolta C; Roggo C; Roy S; Sentchilo V; Siebenthal AV; Falquet L; van der Meer JR
    Environ Microbiol; 2015 Jan; 17(1):91-104. PubMed ID: 24803113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorobenzoate-degrading bacteria in similar pristine soils exhibit different community structures and population dynamics in response to anthropogenic 2-, 3-, and 4-chlorobenzoate levels.
    Gentry TJ; Wang G; Rensing C; Pepper IL
    Microb Ecol; 2004 Jul; 48(1):90-102. PubMed ID: 15085300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of bacterial consortia capable of degrading 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions.
    Song B; Kerkhof LJ; Häggblom MM
    FEMS Microbiol Lett; 2002 Aug; 213(2):183-8. PubMed ID: 12167535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogeny of the Sphaerotilus-Leptothrix group inferred from morphological comparisons, genomic fingerprinting, and 16S ribosomal DNA sequence analyses.
    Siering PL; Ghiorse WC
    Int J Syst Bacteriol; 1996 Jan; 46(1):173-82. PubMed ID: 8573492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RFLP of rRNA genes and sequencing of the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: a phylogenetic approach.
    Aakra A; Utåker JB; Nes IF
    Int J Syst Bacteriol; 1999 Jan; 49 Pt 1():123-30. PubMed ID: 10028253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudomonas qingdaonensis sp. nov., an aflatoxin-degrading bacterium, isolated from peanut rhizospheric soil.
    Wang MQ; Wang Z; Yu LN; Zhang CS; Bi J; Sun J
    Arch Microbiol; 2019 Jul; 201(5):673-678. PubMed ID: 30798341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of xenobiotic-degrading isolates from the beta subclass of the Proteobacteria by a polyphasic approach including 16S rRNA partial sequencing.
    Busse HJ; el-Banna T; Oyaizu H; Auling G
    Int J Syst Bacteriol; 1992 Jan; 42(1):19-26. PubMed ID: 1371062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Description of strain 3CB-1, a genomovar of Thauera aromatica, capable of degrading 3-chlorobenzoate coupled to nitrate reduction.
    Song B; Palleroni NJ; Häggblom MM
    Int J Syst Evol Microbiol; 2000 Mar; 50 Pt 2():551-558. PubMed ID: 10758860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic exchange in soil between introduced chlorobenzoate degraders and indigenous biphenyl degraders.
    Focht DD; Searles DB; Koh SC
    Appl Environ Microbiol; 1996 Oct; 62(10):3910-3. PubMed ID: 8837452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Community shifts in a seeded 3-chlorobenzoate degrading membrane biofilm reactor: indications for involvement of in situ horizontal transfer of the clc-element from inoculum to contaminant bacteria.
    Springael D; Peys K; Ryngaert A; Van Roy S; Hooyberghs L; Ravatn R; Heyndrickx M; van der Meer JR; Vandecasteele C; Mergeay M; Diels L
    Environ Microbiol; 2002 Feb; 4(2):70-80. PubMed ID: 11972616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.