These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 7582203)

  • 1. Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.
    Grenfell BT; Kleczkowski A; Gilligan CA; Bolker BM
    Stat Methods Med Res; 1995 Jun; 4(2):160-83. PubMed ID: 7582203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple model for complex dynamical transitions in epidemics.
    Earn DJ; Rohani P; Bolker BM; Grenfell BT
    Science; 2000 Jan; 287(5453):667-70. PubMed ID: 10650003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Empirical determinants of measles metapopulation dynamics in England and Wales.
    Finkenstädt B; Grenfell B
    Proc Biol Sci; 1998 Feb; 265(1392):211-20. PubMed ID: 9493407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisited measles and chickenpox dynamics through orthogonal transformation.
    Kanjilal PP; Bhattacharya J
    J Theor Biol; 1999 Mar; 197(2):163-74. PubMed ID: 10074391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaos and biological complexity in measles dynamics.
    Bolker BM; Grenfell BT
    Proc Biol Sci; 1993 Jan; 251(1330):75-81. PubMed ID: 8094567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciting chaos with noise: unexpected dynamics in epidemic outbreaks.
    Billings L; Schwartz IB
    J Math Biol; 2002 Jan; 44(1):31-48. PubMed ID: 11942524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial heterogeneity in epidemic models.
    Lloyd AL; May RM
    J Theor Biol; 1996 Mar; 179(1):1-11. PubMed ID: 8733427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting unobserved exposures from seasonal epidemic data.
    Forgoston E; Schwartz IB
    Bull Math Biol; 2013 Sep; 75(9):1450-71. PubMed ID: 23729314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictability in a highly stochastic system: final size of measles epidemics in small populations.
    Caudron Q; Mahmud AS; Metcalf CJ; Gottfreðsson M; Viboud C; Cliff AD; Grenfell BT
    J R Soc Interface; 2015 Jan; 12(102):20141125. PubMed ID: 25411411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deterministic and stochastic models for the seasonal variability of measles transmission.
    Mollison D; Din SU
    Math Biosci; 1993; 117(1-2):155-77. PubMed ID: 8400572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measles outbreaks in a population with declining vaccine uptake.
    Jansen VA; Stollenwerk N; Jensen HJ; Ramsay ME; Edmunds WJ; Rhodes CJ
    Science; 2003 Aug; 301(5634):804. PubMed ID: 12907792
    [No Abstract]   [Full Text] [Related]  

  • 12. Oscillations and chaos in epidemics: a nonlinear dynamic study of six childhood diseases in Copenhagen, Denmark.
    Olsen LF; Truty GL; Schaffer WM
    Theor Popul Biol; 1988 Jun; 33(3):344-70. PubMed ID: 3266037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamics of measles in sub-Saharan Africa.
    Ferrari MJ; Grais RF; Bharti N; Conlan AJ; Bjørnstad ON; Wolfson LJ; Guerin PJ; Djibo A; Grenfell BT
    Nature; 2008 Feb; 451(7179):679-84. PubMed ID: 18256664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolving the impact of waiting time distributions on the persistence of measles.
    Conlan AJ; Rohani P; Lloyd AL; Keeling M; Grenfell BT
    J R Soc Interface; 2010 Apr; 7(45):623-40. PubMed ID: 19793743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The case for chaos in childhood epidemics. II. Predicting historical epidemics from mathematical models.
    Tidd CW; Olsen LF; Schaffer WM
    Proc Biol Sci; 1993 Dec; 254(1341):257-73. PubMed ID: 8108458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics.
    Xia Y; Bjørnstad ON; Grenfell BT
    Am Nat; 2004 Aug; 164(2):267-81. PubMed ID: 15278849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaos and complexity in measles models: a comparative numerical study.
    Bolker B
    IMA J Math Appl Med Biol; 1993; 10(2):83-95. PubMed ID: 8370994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic effects in a seasonally forced epidemic model.
    Rozhnova G; Nunes A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041906. PubMed ID: 21230312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transients and attractors in epidemics.
    Bauch CT; Earn DJ
    Proc Biol Sci; 2003 Aug; 270(1524):1573-8. PubMed ID: 12908977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Summer music and arts festivals as hot spots for measles transmission: experience from England and Wales, June to October 2016.
    le Polain de Waroux O; Saliba V; Cottrell S; Young N; Perry M; Bukasa A; Ramsay M; Brown K; Amirthalingam G
    Euro Surveill; 2016 Nov; 21(44):. PubMed ID: 27881230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.