These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 758236)

  • 1. Contractures and increase in internal longitudianl resistance of cow ventricular muscle induced by hypoxia.
    Wojtczak J
    Circ Res; 1979 Jan; 44(1):88-95. PubMed ID: 758236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive electrical properties, mechanical activity, and extracellular potassium in arterially perfused and ischemic rabbit ventricular muscle. Effects of calcium entry blockade or hypocalcemia.
    Cascio WE; Yan GX; Kléber AG
    Circ Res; 1990 Jun; 66(6):1461-73. PubMed ID: 2344662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The actions of ouabain on intercellular coupling and conduction velocity in mammalian ventricular muscle.
    Weingart R
    J Physiol; 1977 Jan; 264(2):341-65. PubMed ID: 839458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of lidocaine and quinidine on impulse propagation across the canine Purkinje-muscle junction during combined hyperkalemia, hypoxia, and acidosis.
    Evans JJ; Gilmour RF; Zipes DP
    Circ Res; 1984 Aug; 55(2):185-96. PubMed ID: 6744528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dextrose, verapamil and magnesium during hypoxia in myocardial tissue.
    Bhattacharyya ML; Acharya S
    Clin Physiol Biochem; 1989; 7(6):286-95. PubMed ID: 2627758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of manganese chloride, verapamil, and hypoxia on the rate-dependent increase in internal longitudinal resistance of rabbit myocardium.
    Alvarez J; Rousseau G; Dorticós F; Morlans J
    Can J Physiol Pharmacol; 1989 Apr; 67(4):263-8. PubMed ID: 2758368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of hypoxic and posthypoxic myocardial contracture.
    Greene HL; Weisfeldt ML
    Am J Physiol; 1977 May; 232(5):H526-33. PubMed ID: 860767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation of hypoxia-induced calcium gain and rise in resting tension in isolated rat hearts.
    Nayler WG; Elz JS; Buckley DJ
    Am J Physiol; 1988 Apr; 254(4 Pt 2):H678-85. PubMed ID: 3354696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle.
    Kléber AG; Riegger CB; Janse MJ
    Circ Res; 1987 Aug; 61(2):271-9. PubMed ID: 3621491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium exchange in rabbit myocardium during and after hypoxia: effect of temperature and substrate.
    Harding DP; Poole-Wilson PA
    Cardiovasc Res; 1980 Aug; 14(8):435-45. PubMed ID: 7438146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The combined effects of hypoxia, high K+, and acidosis on the intracellular sodium activity and resting potential in guinea pig papillary muscle.
    Wilde AA; Kléber AG
    Circ Res; 1986 Feb; 58(2):249-56. PubMed ID: 3948342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hypoxia and metabolic inhibition on the intracellular sodium activity of mammalian ventricular muscle.
    MacLeod KT
    J Physiol; 1989 Sep; 416():455-68. PubMed ID: 2558176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle.
    Allen DG; Orchard CH
    J Physiol; 1983 Jun; 339():107-22. PubMed ID: 6887018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of oxygen withdrawal on active and passive electrical properties of arterially perfused rabbit ventricular muscle.
    Riegger CB; Alperovich G; Kléber AG
    Circ Res; 1989 Mar; 64(3):532-41. PubMed ID: 2917379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of enalapril on intracellular resistance and conduction velocity in rat ventricular muscle.
    De Mello WC; Crespo MJ; Altieri P
    J Cardiovasc Pharmacol; 1993 Aug; 22(2):259-63. PubMed ID: 7692167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between the sarcoplasmic reticulum and sarcolemmal calcium transport revealed by rapidly cooling rabbit ventricular muscle.
    Bridge JH
    J Gen Physiol; 1986 Oct; 88(4):437-73. PubMed ID: 3783123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of calcium-dependent action potentials in mammalian myocardium by specific inhibitors of the transmembrane calcium conductivity (verapamil, D 600).
    Tritthart H; Volkmann R; Weiss R; Fleckenstein A
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():27-33. PubMed ID: 1188159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diltiazem and nitrendipine suppress hypoxic contracture in quiescent ventricular myocardium.
    Henry PD; Wahl AM
    Eur Heart J; 1983 Nov; 4(11):819-22. PubMed ID: 6653595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular Ca2+, intercellular electrical coupling, and mechanical activity in ischemic rabbit papillary muscle. Effects of preconditioning and metabolic blockade.
    Dekker LR; Fiolet JW; VanBavel E; Coronel R; Opthof T; Spaan JA; Janse MJ
    Circ Res; 1996 Aug; 79(2):237-46. PubMed ID: 8756000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of temperature and cyanide on electrical and mechanical activities of isoproterenol-damaged frog heart.
    Volkmann R; Pettersson AS
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 81(1):195-202. PubMed ID: 2861049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.