BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7582812)

  • 1. Early environmental stimulation produces long-lasting changes on beta-adrenoceptor transduction system.
    Escorihuela RM; Fernández-Teruel A; Tobeña A; Vivas NM; Mármol F; Badia A; Dierssen M
    Neurobiol Learn Mem; 1995 Jul; 64(1):49-57. PubMed ID: 7582812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal handling induces long-term modifications in central beta-noradrenergic signalling in rats.
    Baamonde C; Lumbreras MA; MartInez-Cué C; Vallina IF; Flórez J; Dierssen M
    Stress; 2002 Jun; 5(2):137-47. PubMed ID: 12186692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term effects of postnatal manipulation on central beta-adrenoceptor transmission.
    Baamonde C; Lumbreras MA; Martínez-Cué C; Vallina IF; García-Calatayud S; Flórez J; Dierssen M
    Stress; 1999 Dec; 3(2):147-62. PubMed ID: 10938576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic AMP accumulation in rat soleus muscle: stimulation by beta2- but not beta3-adrenoceptors.
    Roberts SJ; Summers RJ
    Eur J Pharmacol; 1998 May; 348(1):53-60. PubMed ID: 9650831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute effects of tetrahydroaminoacridine on beta-adrenoceptor-linked cyclic AMP accumulation in brain of young and middle-aged rats.
    Dierssen M; Màrmol F; Vivas NM; Clos MV; Gascón S; Badia A
    Neurosci Lett; 1991 Oct; 132(1):51-4. PubMed ID: 1724070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-train administration of 9-amino-1,2,3,4-tetrahydroacridine enhances passive avoidance retention and decreases beta-adrenoceptor-linked cyclic AMP formation in middle-aged rats.
    Dierssen M; Màrmol F; Vivas NM; Clos MV; Badia A
    Brain Res; 1992 Jul; 586(1):117-20. PubMed ID: 1380875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of prenalterol on beta adrenergic responsiveness and receptors in the cerebral cortex of the rat.
    Ordway GA; Frazer A
    Neuropharmacology; 1988 May; 27(5):529-36. PubMed ID: 2839793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of cyclic AMP accumulation by alpha 2-adrenoceptors in the rat cerebral cortex.
    Kuno N; Kamisaki Y; Itoh T
    Eur J Pharmacol; 1990 Feb; 176(3):281-7. PubMed ID: 1970302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prenatal and early postnatal beta-adrenergic receptor-mediated increase of cyclic AMP in slices of rat brain.
    Walton KG; Miller E; Baldessarini RJ
    Brain Res; 1979 Nov; 177(3):515-22. PubMed ID: 91411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations of central noradrenergic transmission in Ts65Dn mouse, a model for Down syndrome.
    Dierssen M; Vallina IF; Baamonde C; García-Calatayud S; Lumbreras MA; Flórez J
    Brain Res; 1997 Feb; 749(2):238-44. PubMed ID: 9138724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional effects of long-term activation on human beta 2- and beta 3-adrenoceptor signalling.
    Nantel F; Bouvier M; Strosberg AD; Marullo S
    Br J Pharmacol; 1995 Mar; 114(5):1045-51. PubMed ID: 7780639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonin enhances the beta-adrenergic response in rat brain cortical slices.
    Morin D; Sapena R; Zini R; Tillement JP
    Eur J Pharmacol; 1992 Mar; 225(3):273-4. PubMed ID: 1325368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of physostigmine and 1,2,3,4-tetrahydro-9-aminoacridine on the beta-adrenoceptor transduction system.
    Vivas NM; Badia A; Màrmol F; Dierssen M
    Eur J Pharmacol; 1993 Mar; 245(1):9-13. PubMed ID: 8386672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo evidence that nonneuronal beta-adrenoceptors as well as dopamine receptors contribute to cyclic AMP efflux in rat striatum.
    Suyama K; Dykstra KH; Masana MI; Manji HK; Potter WZ
    J Neurochem; 1994 May; 62(5):1734-40. PubMed ID: 8158123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beneficial effects of enriched environment following status epilepticus in immature rats.
    Faverjon S; Silveira DC; Fu DD; Cha BH; Akman C; Hu Y; Holmes GL
    Neurology; 2002 Nov; 59(9):1356-64. PubMed ID: 12427884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitation of noradrenaline release from rat brain slices by beta-adrenoceptors.
    Murugaiah KD; O'Donnell JM
    Naunyn Schmiedebergs Arch Pharmacol; 1995 May; 351(5):483-90. PubMed ID: 7643911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential relevance of beta-adrenoceptor subtypes in modulating the rat brown adipocytes function.
    Nisoli E; Tonello C; Carruba MO
    Arch Int Pharmacodyn Ther; 1995; 329(3):436-53. PubMed ID: 8546541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pretreatment with N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline accelerates the electroshock-induced decrease in density of beta-adrenoceptors but not functional downregulation.
    Pilc A; Vetulani J
    Neuropharmacology; 1990 May; 29(5):469-73. PubMed ID: 1972550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for different interactions between beta(1)- and beta(2)-adrenoceptor subtypes with adenylyl cyclase in the rat brain: a concentration-response study using forskolin.
    Morin D; Sapena R; Tillement JP; Urien S
    Pharmacol Res; 2000 Apr; 41(4):435-43. PubMed ID: 10704268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action on noradrenergic transmission of an anticholinesterase: 9-amino-1,2,3,4-tetrahydroacridine.
    Vivas NM; Màrmol F; Sallés J; Badia A; Dierssen M
    Neuropharmacology; 1995 Apr; 34(4):367-75. PubMed ID: 7566467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.