BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7582959)

  • 1. Synthesis and DNA binding properties of C3-, C12-, and C24-substituted amino-steroids derived from bile acids.
    Hsieh HP; Muller JG; Burrows CJ
    Bioorg Med Chem; 1995 Jun; 3(6):823-38. PubMed ID: 7582959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobic vs coulombic interactions in the binding of steroidal polyamines to DNA.
    Muller JG; Ng MM; Burrows CJ
    J Mol Recognit; 1996; 9(2):143-8. PubMed ID: 8877806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bile acid amidoalcohols: simple organogelators.
    Valkonen A; Lahtinen M; Virtanen E; Kaikkonen S; Kolehmainen E
    Biosens Bioelectron; 2004 Dec; 20(6):1233-41. PubMed ID: 15556372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13C nuclear magnetic resonance data of bile acid derivatives.
    Dias JR; Gao H; Kolehmainen E
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Jan; 56A(1):53-77. PubMed ID: 10728856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-retention correlation of isomeric bile acids in inclusion high-performance liquid chromatography with methyl beta-cyclodextrin.
    Momose T; Yamaguchi Y; Iida T; Goto J; Nambara T
    Lipids; 1998 Jan; 33(1):101-8. PubMed ID: 9470179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micellization parameters (number average, aggregation number and critical micellar concentration) of bile salt 3 and 7 ethylidene derivatives: Role of the steroidal skeleton II.
    Poša M; Bjedov S; Škorić D; Sakač M
    Biochim Biophys Acta; 2015 Jul; 1850(7):1345-53. PubMed ID: 25840355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion.
    Dziedzic K; Górecka D; Szwengiel A; Smoczyńska P; Czaczyk K; Komolka P
    Food Funct; 2015 Mar; 6(3):1011-20. PubMed ID: 25677572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steroids derived from bile acids; the preparation of 3 (alpha)-hydroxy-Delta 11-cholenic acid from desoxycholic acid.
    McKENZIE BF; McGUCKIN WF; KENDALL EC
    J Biol Chem; 1946 Mar; 162():555-63. PubMed ID: 21018764
    [No Abstract]   [Full Text] [Related]  

  • 9. Efficient calf thymus DNA condensation upon binding with novel bile acid polyamine amides.
    Geall AJ; Al-Hadithi D; Blagbrough IS
    Bioconjug Chem; 2002; 13(3):481-90. PubMed ID: 12009937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical synthesis of 24-beta-D-galactopyranosides of bile acids: a new type of bile acid conjugates in human urine.
    Kakiyama G; Sadakiyo S; Iida T; Mushiake K; Goto T; Mano N; Goto J; Nambara T
    Chem Phys Lipids; 2005 Apr; 134(2):141-50. PubMed ID: 15784232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steroids derived from bile acids; derivatives of Delta 9,11-cholenic acid with substituents at C3 and C12.
    TURNER RB; MATTOX VR
    J Biol Chem; 1946 Mar; 162():571-84. PubMed ID: 21018766
    [No Abstract]   [Full Text] [Related]  

  • 12. Chemometric and conformational approach to the analysis of the aggregation capabilities in a set of bile salts of the allo and normal series.
    Poša M; Sebenji A
    J Pharm Biomed Anal; 2016 Mar; 121():316-324. PubMed ID: 26746785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of 24-phenyl-24-oxo steroids derived from bile acids by palladium-catalyzed cross coupling with phenylboronic acid. NMR characterization and X-ray structures.
    Mayorquín-Torres MC; Romero-Ávila M; Flores-Álamo M; Iglesias-Arteaga MA
    Steroids; 2013 Nov; 78(11):1092-7. PubMed ID: 23916542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bile acid synthesis: down-regulation by monohydroxy bile acids.
    Hall R; Kok E; Javitt NB
    FASEB J; 1988 Feb; 2(2):152-6. PubMed ID: 3342968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Self-Assembly of Bile Acid-Phospholipids Controls the Delivery of Doxorubicin and Mice Survivability.
    Sreekanth V; Medatwal N; Pal S; Kumar S; Sengupta S; Bajaj A
    Mol Pharm; 2017 Aug; 14(8):2649-2659. PubMed ID: 28665132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New steroidal dimers with antifungal and antiproliferative activity.
    Salunke DB; Hazra BG; Pore VS; Bhat MK; Nahar PB; Deshpande MV
    J Med Chem; 2004 Mar; 47(6):1591-4. PubMed ID: 14998344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between structure and intestinal absorption of bile acids with a steroid or side-chain modification.
    Aldini R; Roda A; Montagnani M; Cerrè C; Pellicciari R; Roda E
    Steroids; 1996 Oct; 61(10):590-7. PubMed ID: 8910972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence (fluidity/hydration) and calorimetric studies of interactions of bile acid-drug conjugates with model membranes.
    Sreekanth V; Bajaj A
    J Phys Chem B; 2013 Feb; 117(7):2123-33. PubMed ID: 23383746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of [3,4-(13)c(2)]-enriched bile salts as NMR probes of protein-ligand interactions.
    Tochtrop GP; DeKoster GT; Cistola DP; Covey DF
    J Org Chem; 2002 Sep; 67(19):6764-71. PubMed ID: 12227809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Number of free hydroxyl groups on bile acid phospholipids determines the fluidity and hydration of model membranes.
    Sreekanth V; Bajaj A
    J Phys Chem B; 2013 Oct; 117(40):12135-44. PubMed ID: 24079709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.