These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7583119)

  • 21. Twist is required for muscle template splitting during adult Drosophila myogenesis.
    Cripps RM; Olson EN
    Dev Biol; 1998 Nov; 203(1):106-15. PubMed ID: 9806776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ectopic expression of MEF2 in the epidermis induces epidermal expression of muscle genes and abnormal muscle development in Drosophila.
    Lin MH; Bour BA; Abmayr SM; Storti RV
    Dev Biol; 1997 Feb; 182(2):240-55. PubMed ID: 9070325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wiring diagrams: regulatory circuits and the control of skeletal myogenesis.
    Lassar A; Münsterberg A
    Curr Opin Cell Biol; 1994 Jun; 6(3):432-42. PubMed ID: 7917336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drosophila mef2 expression during mesoderm development is controlled by a complex array of cis-acting regulatory modules.
    Nguyen HT; Xu X
    Dev Biol; 1998 Dec; 204(2):550-66. PubMed ID: 9882489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA interference demonstrates a role for nautilus in the myogenic conversion of Schneider cells by daughterless.
    Wei Q; Marchler G; Edington K; Karsch-Mizrachi I; Paterson BM
    Dev Biol; 2000 Dec; 228(2):239-55. PubMed ID: 11112327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ventral neuroblasts and the heartless FGF receptor are required for muscle founder cell specification in Drosophila.
    Schulz RA; Gajewski K
    Oncogene; 1999 Nov; 18(48):6818-23. PubMed ID: 10597291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular biology of muscle development.
    Buckingham M
    Cell; 1994 Jul; 78(1):15-21. PubMed ID: 8033207
    [No Abstract]   [Full Text] [Related]  

  • 28. Positive autoregulation of the Myocyte enhancer factor-2 myogenic control gene during somatic muscle development in Drosophila.
    Cripps RM; Lovato TL; Olson EN
    Dev Biol; 2004 Mar; 267(2):536-47. PubMed ID: 15013812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Independent regulatory elements in the upstream region of the Drosophila beta 3 tubulin gene (beta Tub60D) guide expression in the dorsal vessel and the somatic muscles.
    Damm C; Wolk A; Buttgereit D; Löher K; Wagner E; Lilly B; Olson EN; Hasenpusch-Theil K; Renkawitz-Pohl R
    Dev Biol; 1998 Jul; 199(1):138-49. PubMed ID: 9676198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. D-mef2: a Drosophila mesoderm-specific MADS box-containing gene with a biphasic expression profile during embryogenesis.
    Nguyen HT; Bodmer R; Abmayr SM; McDermott JC; Spoerel NA
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7520-4. PubMed ID: 8052612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle LIM proteins are associated with muscle sarcomeres and require dMEF2 for their expression during Drosophila myogenesis.
    Stronach BE; Renfranz PJ; Lilly B; Beckerle MC
    Mol Biol Cell; 1999 Jul; 10(7):2329-42. PubMed ID: 10397768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ZEB, a vertebrate homolog of Drosophila Zfh-1, is a negative regulator of muscle differentiation.
    Postigo AA; Dean DC
    EMBO J; 1997 Jul; 16(13):3935-43. PubMed ID: 9233803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel Drosophila, mef2-regulated muscle gene isolated in a subtractive hybridization-based molecular screen using small amounts of zygotic mutant RNA.
    Taylor MV
    Dev Biol; 2000 Apr; 220(1):37-52. PubMed ID: 10720429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myocyte enhancer factor-2 transcription factors in neuronal differentiation and survival.
    Heidenreich KA; Linseman DA
    Mol Neurobiol; 2004 Apr; 29(2):155-66. PubMed ID: 15126683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drosophila Lame duck, a novel member of the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion-competent myoblast development.
    Duan H; Skeath JB; Nguyen HT
    Development; 2001 Nov; 128(22):4489-500. PubMed ID: 11714674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscle pattern diversification in Drosophila: the story of imaginal myogenesis.
    Roy S; VijayRaghavan K
    Bioessays; 1999 Jun; 21(6):486-98. PubMed ID: 10402955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Muscle development: a transcriptional pathway in myogenesis.
    Taylor MV
    Curr Biol; 1998 May; 8(10):R356-8. PubMed ID: 9601637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myocyte enhancer factor 2 (MEF2).
    Brand NJ
    Int J Biochem Cell Biol; 1997 Dec; 29(12):1467-70. PubMed ID: 9570140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. D-mef2 is a target for Tinman activation during Drosophila heart development.
    Gajewski K; Kim Y; Lee YM; Olson EN; Schulz RA
    EMBO J; 1997 Feb; 16(3):515-22. PubMed ID: 9034334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutations within the conserved MADS box of the D-MEF2 muscle differentiation factor result in a loss of DNA binding ability and lethality in Drosophila.
    Nguyen T; Wang J; Schulz RA
    Differentiation; 2002 Oct; 70(8):438-46. PubMed ID: 12366381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.