These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 7583131)

  • 1. Light-harvesting complex. Rings of light.
    Hunter CN
    Curr Biol; 1995 Aug; 5(8):826-8. PubMed ID: 7583131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective release, removal, and reconstitution of bacteriochlorophyll a molecules into the B800 sites of LH2 complexes from Rhodopseudomonas acidophila 10050.
    Fraser NJ; Dominy PJ; Ucker B; Simonin I; Scheer H; Cogdell RJ
    Biochemistry; 1999 Jul; 38(30):9684-92. PubMed ID: 10423247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-harvesting mechanisms in purple photosynthetic bacteria.
    Isaacs NW; Cogdell RJ; Freer AA; Prince SM
    Curr Opin Struct Biol; 1995 Dec; 5(6):794-7. PubMed ID: 8749368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodospirillum sphaeroides using reconstitution methodology with bacteriochlorophyll analogs.
    Davis CM; Parkes-Loach PS; Cook CK; Meadows KA; Bandilla M; Scheer H; Loach PA
    Biochemistry; 1996 Mar; 35(9):3072-84. PubMed ID: 8608148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Förster energy transfer in chlorosomes of green photosynthetic bacteria.
    Causgrove TP; Brune DC; Blankenship RE
    J Photochem Photobiol B; 1992 Aug; 15(1-2):171-9. PubMed ID: 11536509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of membrane polypeptide oligomerization in light-harvesting complexes and associated structural changes.
    Sturgis JN; Robert B
    J Mol Biol; 1994 May; 238(3):445-54. PubMed ID: 8176735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Are "giant" chlorosomes part of light-harvesting antennae of the photosynthetic apparatus in green bacteria?].
    Borisov AIu
    Biofizika; 2009; 54(3):434-41. PubMed ID: 19569502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The variability of light-harvesting complexes in aerobic anoxygenic phototrophs.
    Selyanin V; Hauruseu D; Koblížek M
    Photosynth Res; 2016 Apr; 128(1):35-43. PubMed ID: 26482589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic reaction centers.
    Allen JP; Williams JC
    FEBS Lett; 1998 Oct; 438(1-2):5-9. PubMed ID: 9821949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural model of the photosynthetic reaction center of Rhodobacter capsulatus.
    Foloppe N; Ferrand M; Breton J; Smith JC
    Proteins; 1995 Jul; 22(3):226-44. PubMed ID: 7479696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond probe of structural analogies between chlorosomes and bacteriochlorophyll c aggregates.
    Savikhin S; van Noort PI; Blankenship RE; Struve WS
    Biophys J; 1995 Sep; 69(3):1100-4. PubMed ID: 8519963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on the heterogeneity of the light-harvesting complex II from Ectothiorhodospira sp. after acid/chaotropic treatment.
    Buche A; Picorel R
    Z Naturforsch C J Biosci; 2000; 55(11-12):943-7. PubMed ID: 11204199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila. I. Experiments and Monte Carlo simulations.
    Ketelaars M; van Oijen AM; Matsushita M; Köhler J; Schmidt J; Aartsma TJ
    Biophys J; 2001 Mar; 80(3):1591-603. PubMed ID: 11222320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides.
    Olsen JD; Sturgis JN; Westerhuis WH; Fowler GJ; Hunter CN; Robert B
    Biochemistry; 1997 Oct; 36(41):12625-32. PubMed ID: 9376369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved tryptophan fluorescence in photosynthetic reaction centers from Rhodobacter sphaeroides.
    Godik VI; Blankenship RE; Causgrove TP; Woodbury N
    FEBS Lett; 1993 Apr; 321(2-3):229-32. PubMed ID: 8477854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and properties of the bacteriochlorophyll binding site in peripheral light-harvesting complexes of purple bacteria.
    Sturgis JN; Jirsakova V; Reiss-Husson F; Cogdell RJ; Robert B
    Biochemistry; 1995 Jan; 34(2):517-23. PubMed ID: 7819244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exchanging cofactors in the core antennae from purple bacteria: structure and properties of Zn-bacteriopheophytin-containing LH1.
    Lapouge K; Näveke A; Robert B; Scheer H; Sturgis JN
    Biochemistry; 2000 Feb; 39(5):1091-9. PubMed ID: 10653655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond energy transfer and spectral equilibration in bacteriochlorophyll a--protein antenna trimers from the green bacterium Chlorobium tepidum.
    Savikhin S; Zhou W; Blankenship RE; Struve WS
    Biophys J; 1994 Jan; 66(1):110-3. PubMed ID: 8130329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation of hydrogen bonds as a mechanism of stabilization of nonequilibrium states of photosynthetic cofactors.
    Krasil'nikov PM; Pashchenko VZ; Noks PP; Rubin AB
    Dokl Biochem Biophys; 2001; 376():16-8. PubMed ID: 11712123
    [No Abstract]   [Full Text] [Related]  

  • 20. A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair.
    Van Brederode ME; Jones MR; Van Mourik F; Van Stokkum IH; Van Grondelle R
    Biochemistry; 1997 Jun; 36(23):6855-61. PubMed ID: 9188680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.