BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 7583556)

  • 1. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular endothelial cell morphology and cytoskeleton.
    Zhao S; Suciu A; Ziegler T; Moore JE; Bürki E; Meister JJ; Brunner HR
    Arterioscler Thromb Vasc Biol; 1995 Oct; 15(10):1781-6. PubMed ID: 7583556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch.
    Moore JE; Bürki E; Suciu A; Zhao S; Burnier M; Brunner HR; Meister JJ
    Ann Biomed Eng; 1994; 22(4):416-22. PubMed ID: 7998687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton.
    Galbraith CG; Skalak R; Chien S
    Cell Motil Cytoskeleton; 1998; 40(4):317-30. PubMed ID: 9712262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells.
    Ziegler T; Bouzourène K; Harrison VJ; Brunner HR; Hayoz D
    Arterioscler Thromb Vasc Biol; 1998 May; 18(5):686-92. PubMed ID: 9598825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide synthase expression in endothelial cells exposed to mechanical forces.
    Ziegler T; Silacci P; Harrison VJ; Hayoz D
    Hypertension; 1998 Aug; 32(2):351-5. PubMed ID: 9719066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells.
    Meza D; Abejar L; Rubenstein DA; Yin W
    J Biomech Eng; 2016 Mar; 138(3):4032550. PubMed ID: 26810848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cyclic axial stretch of rat arteries on endothelial cytoskeletal morphology and vascular reactivity.
    Sipkema P; van der Linden PJ; Westerhof N; Yin FC
    J Biomech; 2003 May; 36(5):653-9. PubMed ID: 12694995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress.
    Malek AM; Izumo S
    J Cell Sci; 1996 Apr; 109 ( Pt 4)():713-26. PubMed ID: 8718663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of combined cyclic stretch and fluid shear stress on endothelial cell morphological responses.
    Owatverot TB; Oswald SJ; Chen Y; Wille JJ; Yin FC
    J Biomech Eng; 2005 Jun; 127(3):374-82. PubMed ID: 16060344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biorheological views of endothelial cell responses to mechanical stimuli.
    Sato M; Ohashi T
    Biorheology; 2005; 42(6):421-41. PubMed ID: 16369082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium.
    Malek AM; Gibbons GH; Dzau VJ; Izumo S
    J Clin Invest; 1993 Oct; 92(4):2013-21. PubMed ID: 8408655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress.
    Thoumine O; Nerem RM; Girard PR
    Lab Invest; 1995 Oct; 73(4):565-76. PubMed ID: 7474929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-related responses of intracellular inositol phosphate levels in cultured aortic endothelial cells.
    Prasad AR; Logan SA; Nerem RM; Schwartz CJ; Sprague EA
    Circ Res; 1993 Apr; 72(4):827-36. PubMed ID: 8443870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress.
    Noria S; Xu F; McCue S; Jones M; Gotlieb AI; Langille BL
    Am J Pathol; 2004 Apr; 164(4):1211-23. PubMed ID: 15039210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium.
    Malek A; Izumo S
    Am J Physiol; 1992 Aug; 263(2 Pt 1):C389-96. PubMed ID: 1514586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear stress induces changes in the morphology and cytoskeleton organisation of arterial endothelial cells.
    Cucina A; Sterpetti AV; Pupelis G; Fragale A; Lepidi S; Cavallaro A; Giustiniani Q; Santoro D'Angelo L
    Eur J Vasc Endovasc Surg; 1995 Jan; 9(1):86-92. PubMed ID: 7664019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous effects of shear stress and cyclic circumferential stretch regarding endothelial dysfunction and oxidative stress: an ex vivo arterial model.
    Thacher TN; Silacci P; Stergiopulos N; da Silva RF
    J Vasc Res; 2010; 47(4):336-45. PubMed ID: 20016207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells.
    Davies PF; Dewey CF; Bussolari SR; Gordon EJ; Gimbrone MA
    J Clin Invest; 1984 Apr; 73(4):1121-9. PubMed ID: 6707208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model for the alignment of actin filaments in endothelial cells subjected to fluid shear stress.
    Suciu A; Civelekoglu G; Tardy Y; Meister JJ
    Bull Math Biol; 1997 Nov; 59(6):1029-46. PubMed ID: 9358734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular endothelial cell proliferation in culture and the influence of flow.
    Levesque MJ; Nerem RM; Sprague EA
    Biomaterials; 1990 Nov; 11(9):702-7. PubMed ID: 2090307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.