BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7584174)

  • 1. Retropatellar forces after rupture of the PCL and patello-tibial transfixation: an in vitro study.
    Hagena FW; Plitz W; Mühlberger G; Carl C
    Knee Surg Sports Traumatol Arthrosc; 1994; 2(1):31-7. PubMed ID: 7584174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patella-tibial transfixation for posterior cruciate ligament repair and reconstruction: a biomechanical analysis.
    Kambic HE; Dass AG; Andrish JT
    Knee Surg Sports Traumatol Arthrosc; 1997; 5(4):245-50. PubMed ID: 9430575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Treatment of posterior cruciate ligament rupture and recent knee dislocations by olecranisation of the patella without surgical repair].
    Rouvillain JL; Dib C; Bahuet F; Delattre O; Catonne Y
    Int Orthop; 1995; 19(5):269-74. PubMed ID: 8567130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injuries to the posterior cruciate ligament of the knee.
    Kannus P; Bergfeld J; Järvinen M; Johnson RJ; Pope M; Renström P; Yasuda K
    Sports Med; 1991 Aug; 12(2):110-31. PubMed ID: 1947532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional anatomical model of the human patello-femoral joint, for the determination of patello-femoral motions and contact characteristics.
    Hefzy MS; Yang H
    J Biomed Eng; 1993 Jul; 15(4):289-302. PubMed ID: 8361154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee.
    Giffin JR; Stabile KJ; Zantop T; Vogrin TM; Woo SL; Harner CD
    Am J Sports Med; 2007 Sep; 35(9):1443-9. PubMed ID: 17641101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of posterior cruciate ligament rupture on biomechanical features of the medial femoral condyle.
    Gao SG; Jiang W; Lei GH; Xu M; Yu F; Li KH
    Orthop Surg; 2011 Aug; 3(3):205-10. PubMed ID: 22009653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sectioning the posterolateral structures on knee kinematics and in situ forces in the posterior cruciate ligament.
    Vogrin TM; Höher J; Arøen A; Woo SL; Harner CD
    Knee Surg Sports Traumatol Arthrosc; 2000; 8(2):93-8. PubMed ID: 10795671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions.
    Shelburne KB; Pandy MG
    J Biomech; 1997 Feb; 30(2):163-76. PubMed ID: 9001937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional knee joint movements during a step-up: evaluation after anterior cruciate ligament rupture.
    Jonsson H; Kärrholm J
    J Orthop Res; 1994 Nov; 12(6):769-79. PubMed ID: 7983552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posterior cruciate ligament rupture alters in vitro knee kinematics.
    Kumagai M; Mizuno Y; Mattessich SM; Elias JJ; Cosgarea AJ; Chao EY
    Clin Orthop Relat Res; 2002 Feb; (395):241-8. PubMed ID: 11937888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Clinical application of biomechanic and functional anatomical findings of the knee joint].
    Friederich NF; Müller W; O'Brien WR
    Orthopade; 1992 Feb; 21(1):41-50. PubMed ID: 1549337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pure passive hyperextension of the human cadaver knee generates simultaneous bicruciate ligament rupture.
    Meyer EG; Baumer TG; Haut RC
    J Biomech Eng; 2011 Jan; 133(1):011012. PubMed ID: 21186902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct in vitro measurement of forces in the cruciate ligaments. Part I: The effect of multiplane loading in the intact knee.
    Wascher DC; Markolf KL; Shapiro MS; Finerman GA
    J Bone Joint Surg Am; 1993 Mar; 75(3):377-86. PubMed ID: 8444916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [An experimental study of split-double-bundle posterior cruciate ligament reconstruction in single femoral tunnel].
    Tao C; Wang W; He A
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Aug; 21(8):820-4. PubMed ID: 17882876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomechanical study of replacement of the posterior cruciate ligament with a graft. Part II: Forces in the graft compared with forces in the intact ligament.
    Markolf KL; Slauterbeck JR; Armstrong KL; Shapiro MS; Finerman GA
    J Bone Joint Surg Am; 1997 Mar; 79(3):381-6. PubMed ID: 9070527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of tibial positioning on the diagnosis of posterolateral rotatory instability in the posterior cruciate ligament-deficient knee.
    Strauss EJ; Ishak C; Inzerillo C; Walsh M; Yildirim G; Walker P; Jazrawi L; Rosen J
    Br J Sports Med; 2007 Aug; 41(8):481-5; discussion 485. PubMed ID: 17261553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Posterior cruciate ligament injury is influenced by intercondylar shape and size of tibial eminence.
    van Kuijk KSR; Reijman M; Bierma-Zeinstra SMA; Waarsing JH; Meuffels DE
    Bone Joint J; 2019 Sep; 101-B(9):1058-1062. PubMed ID: 31474133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCL reconstruction. In vitro biomechanical comparison of 'isometric' versus single and double-bundled 'anatomic' grafts.
    Race A; Amis AA
    J Bone Joint Surg Br; 1998 Jan; 80(1):173-9. PubMed ID: 9460977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Popliteus bypass and popliteofibular ligament reconstructions reduce posterior tibial translations and forces in a posterior cruciate ligament graft.
    Markolf KL; Graves BR; Sigward SM; Jackson SR; McAllister DR
    Arthroscopy; 2007 May; 23(5):482-7. PubMed ID: 17478278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.