These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 7584397)

  • 1. Evolution of a computer program for classifying protein segments as transmembrane domains using genetic programming.
    Koza JR
    Proc Int Conf Intell Syst Mol Biol; 1994; 2():244-52. PubMed ID: 7584397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A case study where biology inspired a solution to a computer science problem.
    Koza JR; Andre D
    Pac Symp Biocomput; 1996; ():500-11. PubMed ID: 9390254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane segment prediction from protein sequence data.
    Weiss SM; Cohen DM; Indurkhya N
    Proc Int Conf Intell Syst Mol Biol; 1993; 1():420-8. PubMed ID: 7584366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TM Finder: a prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales.
    Deber CM; Wang C; Liu LP; Prior AS; Agrawal S; Muskat BL; Cuticchia AJ
    Protein Sci; 2001 Jan; 10(1):212-9. PubMed ID: 11266608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DIALIGN-T: an improved algorithm for segment-based multiple sequence alignment.
    Subramanian AR; Weyer-Menkhoff J; Kaufmann M; Morgenstern B
    BMC Bioinformatics; 2005 Mar; 6():66. PubMed ID: 15784139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. REvolver: modeling sequence evolution under domain constraints.
    Koestler T; von Haeseler A; Ebersberger I
    Mol Biol Evol; 2012 Sep; 29(9):2133-45. PubMed ID: 22383532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GATA: a graphic alignment tool for comparative sequence analysis.
    Nix DA; Eisen MB
    BMC Bioinformatics; 2005 Jan; 6():9. PubMed ID: 15655071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of fitness distance correlation as a difficulty measure in genetic programming.
    Tomassini M; Vanneschi L; Collard P; Clergue M
    Evol Comput; 2005; 13(2):213-39. PubMed ID: 15969901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ProDomAs, protein domain assignment algorithm using center-based clustering and independent dominating set.
    Ansari ES; Eslahchi C; Pezeshk H; Sadeghi M
    Proteins; 2014 Sep; 82(9):1937-46. PubMed ID: 24596179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UPSEC: an algorithm for classifying unaligned protein sequences into functional families.
    Ma PC; Chan KC
    J Comput Biol; 2008 May; 15(4):431-43. PubMed ID: 18435571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein classification using ontology classification.
    Wolstencroft K; Lord P; Tabernero L; Brass A; Stevens R
    Bioinformatics; 2006 Jul; 22(14):e530-8. PubMed ID: 16873517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The prediction of the degree of exposure to solvent of amino acid residues via genetic programming.
    Handley S
    Proc Int Conf Intell Syst Mol Biol; 1994; 2():156-60. PubMed ID: 7584385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of protein families and detection of the determinant residues with an improved self-organizing map.
    Andrade MA; Casari G; Sander C; Valencia A
    Biol Cybern; 1997 Jun; 76(6):441-50. PubMed ID: 9263431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of proteins based on segments structural similarity.
    Plewczynski D; Pas J; Von Grotthuss M; Rychlewski L
    Acta Biochim Pol; 2004; 51(1):161-72. PubMed ID: 15094837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PHOG-BLAST--a new generation tool for fast similarity search of protein families.
    Merkeev IV; Mironov AA
    BMC Evol Biol; 2006 Jun; 6():51. PubMed ID: 16792802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of polypeptide fragments exposed to the solvent.
    Carugo O
    In Silico Biol; 2003; 3(4):417-28. PubMed ID: 12954085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the quality of tree-based protein classification.
    Lazareva-Ulitsky B; Diemer K; Thomas PD
    Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear programming based approach to the derivation of a contact potential for protein threading.
    Akutsu T; Tashimo H
    Pac Symp Biocomput; 1998; ():413-24. PubMed ID: 9697200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein threading by linear programming.
    Xu J; Li M; Lin G; Kim D; Xu Y
    Pac Symp Biocomput; 2003; ():264-75. PubMed ID: 12603034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.