These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 7584412)

  • 21. Organization of the human beta-adducin gene (ADD2).
    Gilligan DM; Lozovatsky L; Silberfein A
    Genomics; 1997 Jul; 43(2):141-8. PubMed ID: 9244430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fine structure of the human ceruloplasmin gene.
    Daimon M; Yamatani K; Igarashi M; Fukase N; Kawanami T; Kato T; Tominaga M; Sasaki H
    Biochem Biophys Res Commun; 1995 Mar; 208(3):1028-35. PubMed ID: 7702601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conserved signals around the 5' splice sites in eukaryotic nuclear precursor mRNAs: G-runs are frequent in the introns and C in the exons near both 5' and 3' splice sites.
    Nussinov R
    J Biomol Struct Dyn; 1989 Apr; 6(5):985-1000. PubMed ID: 2590511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An improved system for exon recognition and gene modeling in human DNA sequences.
    Xu Y; Einstein JR; Mural RJ; Shah M; Uberbacher EC
    Proc Int Conf Intell Syst Mol Biol; 1994; 2():376-84. PubMed ID: 7584416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two alternative exons can result from activation of the cryptic splice acceptor site deep within intron 2 of the dystrophin gene in a patient with as yet asymptomatic dystrophinopathy.
    Yagi M; Takeshima Y; Wada H; Nakamura H; Matsuo M
    Hum Genet; 2003 Feb; 112(2):164-70. PubMed ID: 12522557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of splice junctions in mRNA sequences.
    Nakata K; Kanehisa M; DeLisi C
    Nucleic Acids Res; 1985 Jul; 13(14):5327-40. PubMed ID: 4022782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fine structure of the human translocation protein 1 (HTP1/TLOC1) gene.
    Daimon M; Susa S; Kato T
    IUBMB Life; 1999 Dec; 48(6):619-24. PubMed ID: 10683767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition.
    Amit M; Donyo M; Hollander D; Goren A; Kim E; Gelfman S; Lev-Maor G; Burstein D; Schwartz S; Postolsky B; Pupko T; Ast G
    Cell Rep; 2012 May; 1(5):543-56. PubMed ID: 22832277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcription vectors that facilitate the identification and mapping of RNA splice sites in genomic DNA.
    Reilly JD; Melhem RF; Lutz CM; Edmonds M
    DNA Cell Biol; 1990 Sep; 9(7):535-42. PubMed ID: 2222814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deletion of a splice donor site ablates expression of the following exon and produces an unphosphorylated RB protein unable to bind SV40 T antigen.
    Shew JY; Chen PL; Bookstein R; Lee EY; Lee WH
    Cell Growth Differ; 1990 Jan; 1(1):17-25. PubMed ID: 1964074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Splice-site identification for exon prediction using bidirectional LSTM-RNN approach.
    Singh N; Nath R; Singh DB
    Biochem Biophys Rep; 2022 Jul; 30():101285. PubMed ID: 35663929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identical sequence patterns in the ends of exons and introns of human protein-coding genes.
    Tavares R; Renaud G; Oliveira PS; Ferreira CG; Dias-Neto E; Passetti F
    Comput Biol Chem; 2012 Feb; 36():55-61. PubMed ID: 22301201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An aberrant splicing using a 3' cryptic splice site within the CH1 exon induces truncated mu-chain production.
    Komori T; Sugiyama H
    Immunology; 1995 May; 85(1):166-70. PubMed ID: 7635518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction.
    Yin C
    J Bioinform Comput Biol; 2015 Apr; 13(2):1550004. PubMed ID: 25491390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of human mRNA donor and acceptor sites from the DNA sequence.
    Brunak S; Engelbrecht J; Knudsen S
    J Mol Biol; 1991 Jul; 220(1):49-65. PubMed ID: 2067018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parallel cascade recognition of exon and intron DNA sequences.
    Korenberg MJ; Lipson ED; Green JR; Solomon JE
    Ann Biomed Eng; 2002 Jan; 30(1):129-40. PubMed ID: 11874136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exon prediction in eucaryotic genomes.
    Vignal L; d'Aubenton-Carafa Y; Lisacek F; Mephu Ngüifo E; Rouzé P; Quinqueton J; Thermes C
    Biochimie; 1996; 78(5):327-34. PubMed ID: 8905152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of coding regions in genomic DNA sequences: an application of dynamic programming and neural networks.
    Snyder EE; Stormo GD
    Nucleic Acids Res; 1993 Feb; 21(3):607-13. PubMed ID: 8441672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of protein coding regions in the human genome by quadratic discriminant analysis.
    Zhang MQ
    Proc Natl Acad Sci U S A; 1997 Jan; 94(2):565-8. PubMed ID: 9012824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of protein-coding regions in Arabidopsis thaliana genome based on quadratic discriminant analysis.
    Zhang MQ
    Plant Mol Biol; 1998 Jul; 37(5):803-6. PubMed ID: 9678575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.