These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7584441)

  • 1. An optimized parsing algorithm well suited to RNA folding.
    Lefebvre F
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():222-30. PubMed ID: 7584441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multithreaded parsing for predicting RNA secondary structures.
    Al-Mulhem MS
    Int J Bioinform Res Appl; 2010; 6(6):609-21. PubMed ID: 21354966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved algorithms for parsing ESLTAGs: a grammatical model suitable for RNA pseudoknots.
    Rajasekaran S; Al Seesi S; Ammar RA
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):619-27. PubMed ID: 20498513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.
    Matsui H; Sato K; Sakakibara Y
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():290-9. PubMed ID: 16448022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary structure prediction of interacting RNA molecules.
    Andronescu M; Zhang ZC; Condon A
    J Mol Biol; 2005 Feb; 345(5):987-1001. PubMed ID: 15644199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.
    Matsui H; Sato K; Sakakibara Y
    Bioinformatics; 2005 Jun; 21(11):2611-7. PubMed ID: 15784748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCFGs in RNA secondary structure prediction RNA secondary structure prediction: a hands-on approach.
    Sükösd Z; Andersen ES; Lyngsø R
    Methods Mol Biol; 2014; 1097():143-62. PubMed ID: 24639159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An interactive framework for RNA secondary structure prediction with a dynamical treatment of constraints.
    Gaspin C; Westhof E
    J Mol Biol; 1995 Nov; 254(2):163-74. PubMed ID: 7490740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamic programming algorithm for RNA structure prediction including pseudoknots.
    Rivas E; Eddy SR
    J Mol Biol; 1999 Feb; 285(5):2053-68. PubMed ID: 9925784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parsing nucleic acid pseudoknotted secondary structure: algorithm and applications.
    Rastegari B; Condon A
    J Comput Biol; 2007; 14(1):16-32. PubMed ID: 17381343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction to stochastic context free grammars.
    Giegerich R
    Methods Mol Biol; 2014; 1097():85-106. PubMed ID: 24639156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics.
    Reeder J; Giegerich R
    BMC Bioinformatics; 2004 Aug; 5():104. PubMed ID: 15294028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the free energy in a stochastic RNA secondary structure model.
    Nebel ME; Scheid A
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(6):1468-82. PubMed ID: 21116040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-directed RNA structure prediction.
    Hofacker IL
    Methods Mol Biol; 2014; 1097():71-84. PubMed ID: 24639155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNAiFOLD: a constraint programming algorithm for RNA inverse folding and molecular design.
    Garcia-Martin JA; Clote P; Dotu I
    J Bioinform Comput Biol; 2013 Apr; 11(2):1350001. PubMed ID: 23600819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic matchers: strengthening the significance of RNA folding energies.
    Höchsmann T; Höchsmann M; Giegerich R
    Comput Syst Bioinformatics Conf; 2006; ():111-21. PubMed ID: 17369630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a sophisticated SCFG design for RNA secondary structure prediction.
    Nebel ME; Scheid A
    Theory Biosci; 2011 Dec; 130(4):313-36. PubMed ID: 22135038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How RNA folds.
    Tinoco I; Bustamante C
    J Mol Biol; 1999 Oct; 293(2):271-81. PubMed ID: 10550208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partition function and base pairing probabilities for RNA-RNA interaction prediction.
    Huang FW; Qin J; Reidys CM; Stadler PF
    Bioinformatics; 2009 Oct; 25(20):2646-54. PubMed ID: 19671692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LinearFold: linear-time approximate RNA folding by 5'-to-3' dynamic programming and beam search.
    Huang L; Zhang H; Deng D; Zhao K; Liu K; Hendrix DA; Mathews DH
    Bioinformatics; 2019 Jul; 35(14):i295-i304. PubMed ID: 31510672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.