These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7584448)

  • 1. A new approach to primer selection in polymerase chain reaction experiments.
    Pearson WR; Robins G; Wrege DE; Zhang T
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():285-91. PubMed ID: 7584448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selecting optimal oligonucleotide primers for multiplex PCR.
    Nicodème P; Steyaert JM
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():210-3. PubMed ID: 9322038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated minimum-set primers and unique probe design algorithms for differential detection on symptom-related pathogens.
    Huang YC; Chang CF; Chan CH; Yeh TJ; Chang YC; Chen CC; Kao CY
    Bioinformatics; 2005 Dec; 21(24):4330-7. PubMed ID: 16249263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Greedy Algorithm for Minimizing the Number of Primers in Multiple PCR Experiments.
    Doi K; Imai H
    Genome Inform Ser Workshop Genome Inform; 1999; 10():73-82. PubMed ID: 11072344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The degenerate primer design problem: theory and applications.
    Linhart C; Shamir R
    J Comput Biol; 2005 May; 12(4):431-56. PubMed ID: 15882141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient algorithm for minimum degeneracy primer selection.
    Balla S; Rajasekaran S
    IEEE Trans Nanobioscience; 2007 Mar; 6(1):12-7. PubMed ID: 17393845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational intelligence-based polymerase chain reaction primer selection based on a novel teaching-learning-based optimisation.
    Cheng YH
    IET Nanobiotechnol; 2014 Dec; 8(4):238-46. PubMed ID: 25429503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The degenerate primer design problem.
    Linhart C; Shamir R
    Bioinformatics; 2002; 18 Suppl 1():S172-81. PubMed ID: 12169545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greedy Algorithms for Finding a Small Set of Primers Satisfying Cover and Length Resolution Conditions in PCR Experiments.
    Doi K; Imai H
    Genome Inform Ser Workshop Genome Inform; 1997; 8():43-52. PubMed ID: 11072304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of teaching-learning-based optimization primer design using regression analysis for different melting temperature calculations.
    Cheng YH
    IEEE Trans Nanobioscience; 2015 Jan; 14(1):3-12. PubMed ID: 25222953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degenerate primer design: theoretical analysis and the HYDEN program.
    Linhart C; Shamir R
    Methods Mol Biol; 2007; 402():221-44. PubMed ID: 17951798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiobjective optimization-driven primer design mechanism: towards user-specified parameters of PCR primer.
    Yang CH; Cheng YH; Yang EC; Chuang LY; Lin YD
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35397164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of multiplex PCR primers using heuristic algorithm for sequential deletion applications.
    Chen YF; Chen RC; Chan YK; Pan RH; Hseu YC; Lin E
    Comput Biol Chem; 2009 Apr; 33(2):181-8. PubMed ID: 19211306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primer design using genetic algorithm.
    Wu JS; Lee C; Wu CC; Shiue YL
    Bioinformatics; 2004 Jul; 20(11):1710-7. PubMed ID: 14988099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical algorithm for multiplex PCR primer set selection.
    Wu J; Wang J; Chen J
    Int J Bioinform Res Appl; 2009; 5(1):38-49. PubMed ID: 19136363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of rapid polymerase chain reactions: mathematical modeling and experimental verification.
    Whitney SE; Sudhir A; Nelson RM; Viljoen HJ
    Comput Biol Chem; 2004 Jul; 28(3):195-209. PubMed ID: 15261150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solving and analyzing side-chain positioning problems using linear and integer programming.
    Kingsford CL; Chazelle B; Singh M
    Bioinformatics; 2005 Apr; 21(7):1028-36. PubMed ID: 15546935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fractional programming approach to efficient DNA melting temperature calculation.
    Leber M; Kaderali L; Schönhuth A; Schrader R
    Bioinformatics; 2005 May; 21(10):2375-82. PubMed ID: 15769839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MAD-DPD: designing highly degenerate primers with maximum amplification specificity.
    Najafabadi HS; Saberi A; Torabi N; Chamankhah M
    Biotechniques; 2008 Apr; 44(4):519-20, 522, 524-6. PubMed ID: 18476816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K-tuple frequency in the human genome and polymerase chain reaction.
    Griffais R; André PM; Thibon M
    Nucleic Acids Res; 1991 Jul; 19(14):3887-91. PubMed ID: 1861980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.