These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7584469)

  • 21. A quantitative model of the Escherichia coli 16 S RNA in the 30 S ribosomal subunit.
    Malhotra A; Harvey SC
    J Mol Biol; 1994 Jul; 240(4):308-40. PubMed ID: 7518524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA Sampler: a new sampling based algorithm for common RNA secondary structure prediction and structural alignment.
    Xu X; Ji Y; Stormo GD
    Bioinformatics; 2007 Aug; 23(15):1883-91. PubMed ID: 17537756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bridging the gap in RNA structure prediction.
    Shapiro BA; Yingling YG; Kasprzak W; Bindewald E
    Curr Opin Struct Biol; 2007 Apr; 17(2):157-65. PubMed ID: 17383172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An RNA folding algorithm including pseudoknots based on dynamic weighted matching.
    Liu H; Xu D; Shao J; Wang Y
    Comput Biol Chem; 2006 Feb; 30(1):72-6. PubMed ID: 16321572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A phylogenetic approach to RNA structure prediction.
    Akmaev VR; Kelley ST; Stormo GD
    Proc Int Conf Intell Syst Mol Biol; 1999; ():10-7. PubMed ID: 10786281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic matching algorithm for viral structure prediction.
    Li H; Zhu D; Zhang C; Liu Z; Han H; Xu Z
    Pak J Pharm Sci; 2014 Jul; 27(4 Suppl):1001-4. PubMed ID: 25016258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and visualization of RNA secondary structure Boltzmann ensemble via information theory.
    Lin L; McKerrow WH; Richards B; Phonsom C; Lawrence CE
    BMC Bioinformatics; 2018 Mar; 19(1):82. PubMed ID: 29506466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Explicit distance geometry: identification of all the degrees of freedom in a large RNA molecule.
    Hadwiger MA; Fox GE
    J Biomol Struct Dyn; 1991 Feb; 8(4):759-79. PubMed ID: 1711857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic prediction of conserved secondary structure: application to the RRE element of HIV, the tRNA-like element of CMV and the mRNA of prion protein.
    Lück R; Steger G; Riesner D
    J Mol Biol; 1996 May; 258(5):813-26. PubMed ID: 8637012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An RNA folding method capable of identifying pseudoknots and base triples.
    Tabaska JE; Cary RB; Gabow HN; Stormo GD
    Bioinformatics; 1998; 14(8):691-9. PubMed ID: 9789095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Approximation algorithms for predicting RNA secondary structures with arbitrary pseudoknots.
    Jiang M
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(2):323-32. PubMed ID: 20431151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting common foldings of homologous RNAs.
    Le SY; Zuker M
    J Biomol Struct Dyn; 1991 Apr; 8(5):1027-44. PubMed ID: 1715169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stochastic context-free grammars for tRNA modeling.
    Sakakibara Y; Brown M; Hughey R; Mian IS; Sjölander K; Underwood RC; Haussler D
    Nucleic Acids Res; 1994 Nov; 22(23):5112-20. PubMed ID: 7800507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing the structure of the Escherichia coli 10Sa RNA (tmRNA).
    Felden B; Himeno H; Muto A; McCutcheon JP; Atkins JF; Gesteland RF
    RNA; 1997 Jan; 3(1):89-103. PubMed ID: 8990402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting RNA secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs.
    Ieong S; Kao MY; Lam TW; Sung WK; Yiu SM
    J Comput Biol; 2003; 10(6):981-95. PubMed ID: 14980021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary rate variation and RNA secondary structure prediction.
    Knudsen B; Andersen ES; Damgaard C; Kjems J; Gorodkin J
    Comput Biol Chem; 2004 Jul; 28(3):219-26. PubMed ID: 15261152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detecting conserved secondary structures in RNA molecules using constrained structural alignment.
    Khaladkar M; Patel V; Bellofatto V; Wilusz J; Wang JT
    Comput Biol Chem; 2008 Aug; 32(4):264-72. PubMed ID: 18472302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A comparative computer analysis of thermodynamic parameters of transport RNA secondary structure].
    Kuznetsov IB; Rodin SN
    Genetika; 1995 Nov; 31(11):1566-74. PubMed ID: 8666224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lifting prediction to alignment of RNA pseudoknots.
    Möhl M; Will S; Backofen R
    J Comput Biol; 2010 Mar; 17(3):429-42. PubMed ID: 20377455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new algorithm for RNA secondary structure design.
    Andronescu M; Fejes AP; Hutter F; Hoos HH; Condon A
    J Mol Biol; 2004 Feb; 336(3):607-24. PubMed ID: 15095976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.