BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7584840)

  • 1. Two endogenous methyl-alpha-D-glucopyranoside uptake activities in Xenopus oocytes.
    Nagata K; Ichikawa O
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Sep; 112(1):115-22. PubMed ID: 7584840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of a Na+/D-glucose cotransporter from rat intestine expressed in oocytes of Xenopus laevis with the endogenous cotransporter.
    Weber WM; Püschel B; Steffgen J; Koepsell H; Schwarz W
    Biochim Biophys Acta; 1991 Mar; 1063(1):73-80. PubMed ID: 2015263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RS1 (RSC1A1) regulates the exocytotic pathway of Na+-D-glucose cotransporter SGLT1.
    Veyhl M; Keller T; Gorboulev V; Vernaleken A; Koepsell H
    Am J Physiol Renal Physiol; 2006 Dec; 291(6):F1213-23. PubMed ID: 16788146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of the new chemotherapeutic agent beta-D-glucosylisophosphoramide mustard (D-19575) into tumor cells is mediated by the Na+-D-glucose cotransporter SAAT1.
    Veyhl M; Wagner K; Volk C; Gorboulev V; Baumgarten K; Weber WM; Schaper M; Bertram B; Wiessler M; Koepsell H
    Proc Natl Acad Sci U S A; 1998 Mar; 95(6):2914-9. PubMed ID: 9501190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic separation and characterization of three sugar transport modes in Caco-2 cells.
    Bissonnette P; Gagné H; Coady MJ; Benabdallah K; Lapointe JY; Berteloot A
    Am J Physiol; 1996 May; 270(5 Pt 1):G833-43. PubMed ID: 8967496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenylglucosides and the Na+/glucose cotransporter (SGLT1): analysis of interactions.
    Lostao MP; Hirayama BA; Loo DD; Wright EM
    J Membr Biol; 1994 Nov; 142(2):161-70. PubMed ID: 7884808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of Na+-dependent hexose transport in OK, an established renal epithelial cell line.
    Van den Bosch L; De Smedt H; Borghgraef R
    Biochim Biophys Acta; 1989 Feb; 979(1):91-8. PubMed ID: 2917171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and biologic evaluation of (11)c-methyl-d-glucoside, a tracer of the sodium-dependent glucose transporters.
    Bormans GM; Van Oosterwyck G; De Groot TJ; Veyhl M; Mortelmans L; Verbruggen AM; Koepsell H
    J Nucl Med; 2003 Jul; 44(7):1075-81. PubMed ID: 12843224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urea transport by cotransporters.
    Leung DW; Loo DD; Hirayama BA; Zeuthen T; Wright EM
    J Physiol; 2000 Oct; 528 Pt 2(Pt 2):251-7. PubMed ID: 11034615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of Na(+) / D-glucose cotransport in Xenopus laevis oocytes by injection of poly(A)(+) RNA isolated from lobster (Homarus americanus) hepatopancreas.
    Mandal A; Verri T; Mandal PK; Storelli C; Ahearn GA
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Jul; 135(3):467-75. PubMed ID: 12829054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of glucose transporters in human peritoneal mesothelial cells.
    Schröppel B; Fischereder M; Wiese P; Segerer S; Huber S; Kretzler M; Heiss P; Sitter T; Schlöndorff D
    Kidney Int; 1998 May; 53(5):1278-87. PubMed ID: 9573543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of Na(+)-coupled sugar transport in HT-29 cells: modulation by glucose.
    Blais A
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1245-52. PubMed ID: 2058655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose.
    Kanai Y; Lee WS; You G; Brown D; Hediger MA
    J Clin Invest; 1994 Jan; 93(1):397-404. PubMed ID: 8282810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Downregulation of the Na(+)- D-glucose cotransporter SGLT1 by protein RS1 (RSC1A1) is dependent on dynamin and protein kinase C.
    Veyhl M; Wagner CA; Gorboulev V; Schmitt BM; Lang F; Koepsell H
    J Membr Biol; 2003 Nov; 196(1):71-81. PubMed ID: 14724758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous D-glucose transport in oocytes of Xenopus laevis.
    Weber WM; Schwarz W; Passow H
    J Membr Biol; 1989 Oct; 111(1):93-102. PubMed ID: 2810354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of a functional glucose transporter in Xenopus oocytes.
    Gould GW; Lienhard GE
    Biochemistry; 1989 Nov; 28(24):9447-52. PubMed ID: 2692709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies.
    Parent L; Supplisson S; Loo DD; Wright EM
    J Membr Biol; 1992 Jan; 125(1):49-62. PubMed ID: 1542106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake.
    Kottra G; Daniel H
    J Pharmacol Exp Ther; 2007 Aug; 322(2):829-35. PubMed ID: 17495124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein.
    Panayotova-Heiermann M; Loo DD; Kong CT; Lever JE; Wright EM
    J Biol Chem; 1996 Apr; 271(17):10029-34. PubMed ID: 8626557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a Na+/glucose cotransporter cloned from rabbit small intestine.
    Ikeda TS; Hwang ES; Coady MJ; Hirayama BA; Hediger MA; Wright EM
    J Membr Biol; 1989 Aug; 110(1):87-95. PubMed ID: 2795642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.