BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7585242)

  • 1. An element in human U6 RNA destabilizes the U4/U6 spliceosomal RNA complex.
    Brow DA; Vidaver RM
    RNA; 1995 Apr; 1(2):122-31. PubMed ID: 7585242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA structure and RNA-protein interactions in purified yeast U6 snRNPs.
    Karaduman R; Fabrizio P; Hartmuth K; Urlaub H; Lührmann R
    J Mol Biol; 2006 Mar; 356(5):1248-62. PubMed ID: 16410014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct probing of RNA structure and RNA-protein interactions in purified HeLa cell's and yeast spliceosomal U4/U6.U5 tri-snRNP particles.
    Mougin A; Gottschalk A; Fabrizio P; Lührmann R; Branlant C
    J Mol Biol; 2002 Apr; 317(5):631-49. PubMed ID: 11955014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spontaneous duplication in U6 spliceosomal RNA uncouples the early and late functions of the ACAGA element in vivo.
    Li Z; Brow DA
    RNA; 1996 Sep; 2(9):879-94. PubMed ID: 8809015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 20kD protein of human [U4/U6.U5] tri-snRNPs is a novel cyclophilin that forms a complex with the U4/U6-specific 60kD and 90kD proteins.
    Teigelkamp S; Achsel T; Mundt C; Göthel SF; Cronshagen U; Lane WS; Marahiel M; Lührmann R
    RNA; 1998 Feb; 4(2):127-41. PubMed ID: 9570313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of Prp24 binding to RNA: a role for Prp24 in the dynamic interaction of U4 and U6 snRNAs.
    Ghetti A; Company M; Abelson J
    RNA; 1995 Apr; 1(2):132-45. PubMed ID: 7585243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A doughnut-shaped heteromer of human Sm-like proteins binds to the 3'-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro.
    Achsel T; Brahms H; Kastner B; Bachi A; Wilm M; Lührmann R
    EMBO J; 1999 Oct; 18(20):5789-802. PubMed ID: 10523320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP.
    Liu S; Rauhut R; Vornlocher HP; Lührmann R
    RNA; 2006 Jul; 12(7):1418-30. PubMed ID: 16723661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6*U5 tri-snRNP formation and pre-mRNA splicing.
    Makarova OV; Makarov EM; Liu S; Vornlocher HP; Lührmann R
    EMBO J; 2002 Mar; 21(5):1148-57. PubMed ID: 11867543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary structure of U6 small nuclear RNA: implications for spliceosome assembly.
    Dunn EA; Rader SD
    Biochem Soc Trans; 2010 Aug; 38(4):1099-104. PubMed ID: 20659011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of core spliceosomal components U5 snRNA loop I and U4/U6 Di-snRNP within U4/U6.U5 Tri-snRNP as revealed by electron cryomicroscopy.
    Sander B; Golas MM; Makarov EM; Brahms H; Kastner B; Lührmann R; Stark H
    Mol Cell; 2006 Oct; 24(2):267-78. PubMed ID: 17052460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of human U6 RNA: stabilizing the intramolecular helix blocks the spliceosomal assembly pathway.
    Wolff T; Bindereif A
    Biochim Biophys Acta; 1995 Jul; 1263(1):39-44. PubMed ID: 7632731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational changes of U6 RNA during the spliceosome cycle: an intramolecular helix is essential both for initiating the U4-U6 interaction and for the first step of slicing.
    Wolff T; Bindereif A
    Genes Dev; 1993 Jul; 7(7B):1377-89. PubMed ID: 8330741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-U5 tri-snRNP into the spliceosome.
    Mathew R; Hartmuth K; Möhlmann S; Urlaub H; Ficner R; Lührmann R
    Nat Struct Mol Biol; 2008 May; 15(5):435-43. PubMed ID: 18425142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human U4/U6 snRNP recycling factor p110: mutational analysis reveals the function of the tetratricopeptide repeat domain in recycling.
    Medenbach J; Schreiner S; Liu S; Lührmann R; Bindereif A
    Mol Cell Biol; 2004 Sep; 24(17):7392-401. PubMed ID: 15314151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. U6 snRNA maturation and stability.
    Fury MG; Zieve GW
    Exp Cell Res; 1996 Oct; 228(1):160-3. PubMed ID: 8892983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction.
    Sashital DG; Cornilescu G; McManus CJ; Brow DA; Butcher SE
    Nat Struct Mol Biol; 2004 Dec; 11(12):1237-42. PubMed ID: 15543154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification by mass spectrometry and functional analysis of novel proteins of the yeast [U4/U6.U5] tri-snRNP.
    Gottschalk A; Neubauer G; Banroques J; Mann M; Lührmann R; Fabrizio P
    EMBO J; 1999 Aug; 18(16):4535-48. PubMed ID: 10449419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The [U4/U6.U5] tri-snRNP-specific 27K protein is a novel SR protein that can be phosphorylated by the snRNP-associated protein kinase.
    Fetzer S; Lauber J; Will CL; Lührmann R
    RNA; 1997 Apr; 3(4):344-55. PubMed ID: 9085842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2.
    Raghunathan PL; Guthrie C
    Curr Biol; 1998 Jul; 8(15):847-55. PubMed ID: 9705931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.